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Abstract: 

To investigate potential causes of L2 performance deficits that correlate with age of onset, we use a 

computational model to explore the individual contributions of L1 entrenchment and aspects of 

memory development. Since development and L1 entrenchment almost invariably coincide, studying 

them independently is seldom possible in humans. To avoid this confound, we study neural network 

models that learn to solve gender assignment and agreement tasks in Spanish and French. We model 

the learner as a collection of recurrent cell assemblies that subserve working memory and are facilitated 

by trainable long-term connections. Varying the time-course over which assemblies and connections 

are added allows us to compare small, growing, child-like networks to fixed-size adult-like ones. 

Networks undergo variable-length exposure to L1 before L2 onset to control the amount of L1 

entrenchment. This model, by allowing us independent control of both variables, lends us a novel 

glimpse of all sides of their interaction and affords a rare test of the less is more hypothesis. Network 

comparisons suggest that final L2 proficiency declines as L2 onset delays increase relative to L1, 

implicating an L1 entrenchment effect. However, aspects of memory development during learning play 

a key role in mitigating these impairments, lending support to less is more as a contributor to sensitive 

periods. 
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1  Introduction 

For decades now, language researchers have been attempting to explain the observation that 

people who learn a second language (L2) later in life tend to have poorer ultimate attainment than those 

who learn the same language earlier in life; for an illustration of the pattern, see Figure 1a. Cross-

linguistically, there is a clear downward trend in many, although not all, measures of language 

proficiency as age of acquisition increases (DeKeyser, 2012). This phenomenon has been referred to by 

many names, usually based on the author's thoughts on the phenomenon's likely cause. Since human 

maturational processes are widely implicated in first language (L1) acquisition, many suspect similar 

developmental processes to be largely responsible for these observed age effects on L2 acquisition, 

often referring to a 'critical' or ‘sensitive period’ for language learning. Others, who view the issue as a 

problem inherent in the process of learning, speak of cross-linguistic interference or entrenchment 

effects. Still others couch the problem in terms of individual differences of the language learners and 

quality and form of the L2 input. While there is support for all of these accounts of this phenomenon, it 

is generally difficult to study any of these potential causes in isolation. 

In this study we use a neural network model to investigate the individual and compound effects 

that two of these potential causes of sensitive periods have on ultimate attainment of a learner's first 

and second languages. The first factor we will consider, entrenchment, can best be understood as 

previous knowledge that is difficult to change and can perhaps only be altered slowly, thus interfering 

with the rapid acquisition of newly available information. In this scenario, the longer the learner is 

exposed to their native language before a second language is introduced, the more their L1 becomes 

entrenched, making the novel rules and patterns of an L2 more difficult to learn (Hernandez et al, 

2005). The second factor we consider is the development of aspects of memory, specifically working 

memory capacity and long-term memory capacity, as implemented by the periodic addition of new 
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units and connections, respectively, to our neural network model. Working memory development is 

particularly interesting in light of evidence, such as that shown in Figure 1b, that a period of rapid 

growth of working memory capacity coincides with a period of rapid deterioration of L2 learning 

ability. 

Insert Figure 1 about here 

Using only experimentation on human subjects, it is difficult to get a complete picture of the 

relative contributions of entrenchment and development. While there are exceptions, specifically in the 

sign language domain, language learning almost invariably starts very early in life, causing L1 

acquisition and early L2 acquisition to coincide with many aspects of development. Thus, the 

contributions of these two factors to the observed differences in ultimate attainment between early and 

late L2 learners cannot be readily separated from each other. With a computational model, on the other 

hand, we can examine the interaction of our two chosen factors from all sides, describing the effects of 

each in isolation as well as their combined impact. 

Of course, at present a computer model cannot learn an entire natural language as human 

learners can. As such, we chose to model the linguistic sub-tasks of gender assignment and agreement. 

The factors guiding this choice of tasks included the fact that native and non-native speakers of a 

language tend to differ significantly, as well as the fact that ultimate attainment tends to vary with age 

of acquisition. Our model learns to perform gender assignment and gender agreement tasks from 

naturalistic training data based on word co-occurrence, without having any built-in knowledge of the 

existence or form of grammatical gender and without being given explicit instruction in the genders of 

particular words or phrases. Our goal with this model is to provide a better understanding of how the 

two potential factors we have chosen to study, entrenchment and memory development, contribute 

individually and in tandem to differences in ultimate language attainment. 
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Our experiments investigate two related but independent hypotheses. The first of these concerns 

the effects of language entrenchment: We expect that as the level of L1 entrenchment goes up, L2 

learning ability goes down, at least up until some point of maximal entrenchment where the effect 

levels off. The second line of inquiry concerns the LESS IS MORE hypothesis (Newport, 1988, 1990) that 

states that a learner in the early stages of working memory development will find L2 learning easier 

than a learner with a fully developed working memory. Our simulations investigate these two 

hypotheses individually and in tandem, to a greater extent than is normally possible in empirical 

studies. Additionally, we are able to investigate more specific distinctions within the less is more 

hypothesis, discriminating the effects due to starting small from those due to addition of fresh memory 

resources. 

The remainder of the paper is structured as follows. Section 2 reviews previous research on 

sensitive period phenomena and relationships to the acquisition of grammatical gender. We also review 

hypotheses relating sensitive periods to working memory and to L1 entrenchment. Section 3 gives an 

overview first of neural networks in general and then of the specific neural network model studied 

herein, including all relevant variations. Section 4 describes separate experiments and results for the 

gender assignment and gender agreement tasks. Finally, in Section 5, we discuss the implications of our 

findings. 

2  Background 

2.1  Sensitive Periods 

Since Lenneberg (1967) first used the term CRITICAL PERIOD in the context of human language 

development, a considerable amount of evidence has accumulated that shows a marked decline in the 

ultimate outcome (not the speed) of language acquisition as age of onset varies from early childhood to 

late adolescence. This decline has been documented in numerous studies, for both L1 and L2 
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development, for both spoken and signed languages, and for phonology as well as morphology and 

syntax (for overviews, see Hyltenstam & Abrahamsson, 2003; DeKeyser, 2012).  

Numerous questions remain, however, at least where the L2 is concerned. The most debated 

one is whether the age effects observed are truly maturational or due to confounds with other variables 

(e.g. DeKeyser & Larson-Hall, 2005; Long, 2005). Most commonly mentioned in the discussion of 

potential confounds are the extent of L1 entrenchment (e.g. MacWhinney, 2006), the quantity and 

quality of input and practice in L2 (e.g., Jia & Aaronson, 2002, 2003), the extent to which the learner is 

motivated to sound like a native speaker (e.g. Bley-Vroman, 1988), and the extent to which formal 

education took place in the L2 (e.g. Hakuta, Bialystok, & Wiley, 2003). An equally important question 

concerns the nature of inter-individual variation (e.g. whether high levels of some forms of aptitude 

mitigate the effect of age of onset; Abrahamsson & Hyltenstam, 2008; DeKeyser, Alfi-Shabtay, & 

Ravid, 2010). Finally, there is the question of intra-individual variation depending on the aspects of 

grammar or pronunciation concerned. In the area of grammar, syntax may be less sensitive to age 

effects than morphology (Johnson & Newport, 1989), regulars less than irregulars (cf. Hudson Kam & 

Newport, 2005, 2009), and salient structures less than non-salient ones (DeKeyser, 2000). Even for a 

given structure, age effects may be detected with ERP without showing up in the behavioral data (e.g. 

for subject-verb agreement in Chen, Shu, Liu, Zhao, & Li, 2007). In the area of pronunciation,  

phonetic detail such as precise voice onset time (Abrahamsson & Hyltenstam, 2009) seems particularly 

problematic for older learners. Some phonetic cues to phonemic status may be easier to pick up than 

others (vowel duration being easier than closure duration; Baker, 2010); some suprasegmentals such as 

stress timing may be less sensitive to age than others (Trofimovich & Baker, 2006); and age may even 

affect different kinds of stress placement differently, the effect being strongest for stress determined by 

syllable structure (Guion, Harada, & Clark, 2004). In sign language, handshape may be more resistant 
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to age effects than location or movement (Morford & Carlson, 2011). 

Those researchers who suspect that sensitive periods are maturational in nature have couched 

their causal explanations in both neurological and psychological terms. Neurological explanations have 

evolved over time from hemispheric specialization (e.g., Lenneberg, 1967) to myelination (e.g., Long, 

1990) to varying rates of neurogenesis, synaptogenesis, or synaptic pruning (e.g., Uylings, 2006).  

These explanations have focused on the brain as a whole, while others more on specific areas such as 

the prefrontal cortex (e.g. Petanjek, Judas, Kostovic, & Uylings, 2008); the amygdala (e.g., 

Pulvermüller & Schumann, 1994); or the hippocampus, medial temporal lobe, and the basal ganglia 

(e.g., Ullman, 2004). Psychological explanations, rather surprisingly, came onto the scene later and 

have included growth of working memory capacity (the less is more hypothesis, e.g. Newport, 1990), 

increased susceptibility to proactive interference (e.g., Iverson et al., 2003), and gradual shifts from 

predominantly procedural/implicit to predominantly declarative/explicit processes (e.g. DeKeyser, 

2000; Paradis, 2009; Ullman, 2004). Ultimately, of course, full explanatory adequacy will only be 

reached if psychological mechanisms can be tied to concurrent neurological developments that together 

explain the specific learning differences observed. 

Empirical research on these issues is usually difficult for many reasons, in large part because 

the natural confounds of many of the variables involved cannot be experimentally disentangled in 

research on human learners. Perhaps the only notable exception is in the study of age of acquisition 

effects in sign language research (Mayberry, Lock & Kazmi, 2002), which is discussed in detail in the  

supplementary material section S.1. 

2.2  Grammatical Gender 

The linguistic phenomenon that our models will learn about is grammatical gender, which refers 

to an arbitrary classification of nouns, often marked by phonological, morphological, and/or semantic 
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properties. Several studies suggest that grammatical gender is subject to sensitive periods. Studies with 

adult L2 learners of languages like French (Guillelmon & Grosjean, 2001), Spanish (Lew-Williams & 

Frenald, 2010) and German (Scherag et al., 2004) have shown that non-native adults are slower than L1 

speakers at processing nouns, and that their processing does not seem to benefit from patterns in gender 

agreement that are present in the language.  Even childhood learners who begin acquiring French in an 

immersion program at age six do not achieve native-like gender agreement (Lapkin & Swain, 1977; 

Harley, 1979), indicating that acquisition of this grammatical component is subject to early age effects. 

For a more detailed background of the acquisition of grammatical gender, see section S.2 in the  

supplementary material. 

Gender systems vary in complexity; many Indo-European languages, such as French and 

German, divide nouns into only two or three gender classes, whereas Bantu languages employ 

extensive gender systems with up to twenty gender classes (Corbett, 1991). The degree to which 

grammatical gender is marked throughout a sentence also varies widely. In English, for example, 

gender is only marked on pronominals with animate reference, whereas gender in the Bantu language 

Swazi may be marked on adjectives, verbs, adverbs, numerals, and conjunctions. 

The languages examined in the current study, French and Spanish, both assign masculine and 

feminine gender to all nouns; however, subtle differences between the gender classification systems 

exist. In French, a noun’s final phoneme provides cues to gender, though the predictive value of the 

final phoneme is not always reliable. For example, according to Surridge (1993, 1995), only one 

'feminine' ([z]), and eight 'masculine' ([æ ̃], [ɛ̃], [ã], [ø], [o], [ʒ], [m], [ɛ]) final phonemes indicate gender 

with more than 90% accuracy; eight 'masculine' ([f], [u], [a], [ʁ], [g], [y], [k], [b]) and nine 'feminine' 

([i], [ɔ̃], [n], [v], [j], [ʃ], [d], [s], [ɲ]) final phonemes indicate gender with 60-89% accuracy; and four 

final phonemes ([l], [m], [p], [t]) are considered ambiguous and do not provide any indication of the 
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noun’s gender. In addition, not everyone agrees with the phonemes’ predictability values. For example, 

Lyster (2006) carried out a final phoneme predictive value analysis based on a different corpus than 

that of Surridge, and while the results are largely similar, some differences exist. Furthermore, the 

effect of a noun’s phonological ending may be overridden by the noun’s morphological ending 

(Surridge, 1989). Under this hierarchy, a word ending in the typically masculine final phoneme [ʁ] will 

be feminine when encompassed by the typically feminine morphological suffix –ure, as in coiffure 

(“hairstyle”). Overall, the French gender system is governed by patterns, but it is a complex system 

with many exceptions. 

The Spanish gender system is less complex and more reliable than that of French. According to 

Teschner and Russell (1984), the majority of Spanish nouns’ final phonemes are predictive of gender. 

Specifically, 90% of nouns ending in the phonemes [a] and [d] are feminine, and 89% of nouns ending 

in [e], [l], [o], and [ɾ] - which account for the majority of nouns - and also [i], [m], [t], [u], [x], [y], [b], 

[c], [tʃ] are masculine. Only three final phonemes, [n], [z], and [s], are considered ambiguous in that 

they do not predict one gender over another. Morphological gender regularities in Spanish also exist, 

though they do not override final phonemes, as seen in French. Teschner and Russell identify seven 

morphological endings that are typically feminine (-ción, -gión, -nión, -sión, -tión, -xión, and -ez) and 

four morphological endings that are typically masculine (-ón, -az, -oz, and -uz). Note that these 

morphological endings encompass two of the ambiguous final phonemes, [n] and [z], but not phonemes 

that are predictive of masculine or feminine. Finally, in both languages, animate nouns referring to 

humans assume semantic gender, so that the words for “man” and “woman” are masculine and 

feminine, respectively. 

Both French and Spanish mark gender on determiners, pronouns, and adjectives. Examples of 

determiner and adjective markings are shown in sentences 1 and 2. 
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(1)  “The little book is white.” 

French: Le petit livre (masc.) est blanc. 

Spanish: El libro (masc.) pequeño es blanco. 

(2)  “The little table is white.” 

French: La petite table (fem.) est blanche. 

Spanish: La mesa (fem.) pequeña es blanca. 

French adjectives may end in almost any phoneme, with the feminine adjective typically 

marked by an additional and often unpredictable suffix. For example, the adjective blanc [blã] 

(“white,” masc.) becomes blanche [blãʃ] in its feminine form, and petit [pәti] (small, masc.) becomes 

petite [pәtit]. A number of adjectives have the same phonological form for both masculine and 

feminine, even when the orthographic form differs. For example, the adjective “difficult” has only one 

orthographic (difficile) and phonological [difisil] form, and the adjective “expensive,” while 

represented by two orthographic forms (cher, masc; chère, fem.), are both pronounced [ʃɛʁ]. 

Spanish adjective formation, on the other hand, is more predictable. The majority of adjectives 

are marked by an -o ending for masculine, and an -a ending for feminine, as in blanco / blanca 

(“white”). As in French, not all adjectives have distinct orthographic and phonological
 
masculine and 

feminine forms. Adjectives ending in -e, -ista, or a consonant, generally maintain the same form in both 

masculine and feminine, as in verde (“green”), idealista (“idealist”), and difícil (“difficult”). However, 

exceptions exist and certain types of adjectives ending in a consonant, such as those referring to 

nationalities, have a feminine form marked by an -a ending, as in español/española (“Spanish”) and 

alemán/alemana (“German”). Other exceptions include adjectives ending in -ín, -ón, -or, such as 

juguetón/juguetona (“playful”) and hablador/habladora (“talkative”). 

Despite the differences described above, the French and Spanish gender systems are similar in 
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that both classify nouns into masculine and feminine based on phonological regularities, and gender is 

marked throughout a sentence on determiners, adjectives, and pronouns. 

2.3  Memory Development and Language Learning 

Our neural network models undergo memory development, in the form of changes in both 

working memory capacity and long-term memory capacity, in order to examine the effects of 

maturation on sensitive period effects. At the most simple description, working memory (used 

interchangeably here with short-term memory) allows pieces of information to be held in the mind for 

brief periods of time in the absence of the input that caused them. In reality, working memory is most 

likely composed of a complex interaction of factors, such as attention (Engle, 2002; Conway, Cowan & 

Bunting, 2001; Kane & Engle, 2003), inhibition or filtering mechanisms (Vogel, McCollough & 

Machizawa, 2005), rehearsability (Baddeley, 2003; Gathercole & Baddeley, 1993; Wilson & 

Emmorey, 1997), and 'chunking' strategies (Miller, 1956). Thus, although working memory is probably 

not a unitary construct, the core ability to store and integrate multiple items is critical to many aspects 

of cognitive functioning, including language processing. Working memory capacity refers to the 

number of items that can be stored and manipulated for a task. In general, higher capacities are 

associated with better cognitive function (Baddeley, 2003; Duncan et al., 2000) since lower capacities 

impose greater informational bottlenecks on processing.  In development, working memory capacity 

grows rapidly from early childhood into adolescence, showing up to a three-fold increase (cf. 

Gathercole 1999). This presents a paradox for language acquisition since higher cognitive function 

associated with higher memory capacity seems to be inversely correlated with overall  language 

learning ability.   

However, this is only a paradox if only the end state of development is considered.  In reality, 

the maturation of working memory as well as language learning occur through time.  One possibility is 
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that limited cognitive ability, in particular a small memory capacity, is crucial to early stages of 

language acquisition, and that memory growth supports full language acquisition. Newport's less is 

more hypothesis (1988, 1990) draws upon data from cases where age of acquisition is not confounded 

with L1 entrenchment: the large proportion of deaf individuals who are not exposed to an accessible 

form of language early in life. During the language acquisition process and at final language 

attainment, these late learners have distinct profiles from early learners. As seen among hearing 

children during early stages of acquisition and word production, young signers (who have been 

exposed to American Sign Language since birth) morphologically simplify complex signs.  This stage 

is considered to be important for morphological analysis of words and signs. Late learners do not make 

these types of errors or simplifications, rather processing the forms as “unanalyzed wholes” (Newport, 

1990). As adults, these late learners use these complex forms in both ungrammatical and grammatical 

contexts, suggesting that they have not successfully learned their internal morphology. Early learners, 

in contrast, progressively develop the complex forms and do not make these types of mistakes as 

adults. 

If the development of working memory is indeed inextricably linked with language acquisition 

abilities, there are two possible explanations for this relationship. The first is addressed by the less is 

more hypothesis, where the crucial factor is starting with a smaller working memory capacity 

(Newport, 1990). The rationale is that when a learning system is incapable of processing and holding in 

memory larger chunks of input, it is forced to analyze the input at lower level of complexity, picking 

out the highest-level and most prominent patterns while possibly abstracting away much of the detail. 

Another potential explanation comes from computational modeling, where it has also been 

demonstrated that controlling the size of the input, perhaps by providing smaller inputs at the beginning 

of training, contributes to better learning (Elman, 1993). Both models have been experimentally tested 
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in adults, where smaller natural working memory or smaller inputs were associated with better 

detection of correlations between two binary variables (Kareev, Lieberman, & Lev, 1997). 

Most studies that directly investigate the relationship between working memory capacity and 

language learning in children suggest that the development of phonological short-term memory in 

particular is critical to word learning (Gathercole & Pickering, 2000; Baddeley, Gathercole, & 

Papagno, 1998; Avons, Wragg, Cupplesa, & Lovegrove, 1998). Higher spans in phonological short-

term memory are linked with larger vocabulary sizes and better performance at learning new words. 

These working memory capacities are often measured by performance on non-word repetition tasks.  

However, these correlations leave the causal relationships inconclusive. The ability to temporarily store 

phonological traces of new utterances may be an important precursor to storing that item in long-term 

memory. On the other hand, it has been suggested that vocabulary growth leads to a better ability to 

analyze the representations into phonological segments, which in turn leads to more robust 

representations of new words (Metsala, 1999). What these two ideas agree on is the importance of the 

development of decomposed, sublexical representations - such as phonemes - for language learning. 

Newport (1990) has made a similar argument about morphology. Drawing upon accompanying 

behavioral evidence that longer words are learned later in development than shorter words even when 

frequencies of these words are matched, Brown and Hulme (1996) demonstrate a computational model 

in which shorter words are maintained in short-term memory for longer given a limited short-term 

memory, facilitating encoding in long-term memory. A consequence of forming representations for 

smaller input first may be a better recognition of incremental patterns throughout learning. 

2.4  Connectionist Modeling 

As discussed in Section 1, it is often difficult to experimentally separate the various possible 

causes of age effects when performing empirical research on human subjects. Computational modeling 
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has a key advantage in its ability to independently manipulate a number of variables and to observe 

their main effects and interactions. Early attempts at computational modeling of linguistic sensitive 

periods (Goldowsky and Newport, 1993) show support for the less is more hypothesis in that a smaller 

working memory was shown to be better for the learning of some grammatical patterns, and this 

conclusion was supported by later studies, computational and otherwise (Cochran, McDonald, & 

Parault, 1999; Kareev, Lieberman, and Lev, 1997; Kersten and Earles, 2001). Recent 

neurocomputational modeling studies (reviewed in Hernandez & Li, 2007) favor explanations of age-

related performance deficits in terms of changes in neural plasticity due the normal accumulation of 

experience. This idea, that the learning process itself could cause the observed sensitive period effects, 

is supported by many other modeling studies (reviewed in, e.g., Thomas & Johnson, 2008) and has 

been called the “paradox of success” since learning one task to proficiency can harm the learning of 

other tasks (Seidenberg & Zevin, 2006). Sensitive period effects can be produced via the learning 

process itself in a number of ways, including entrenchment, where early experience leaves the learning 

system in a state not readily compatible with a new learning task; competition for resources between 

different tasks to be learned; and catastrophic interference, where a new learning task may impact 

performance on a previously learned task that is not actively maintained. 

Previous neural network models that have dealt with aspects of memory development have used 

varying approaches to limiting working memory. Elman (1993) trained Simple Recurrent Networks 

(SRNs) on a complex subset of English. This type of network uses recurrent connections to allow the 

network to access its own previous states, creating an analog of working memory. Elman found that 

these networks had better eventual performance when this working memory was initially limited to a 

discrete window of a few steps and gradually increased, consistent with the less is more hypothesis. 

While others have failed to find a difference between developing and mature networks on similar tasks 
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(e.g. Rohde & Plaut, 1999), Elman's study shows one way in which working memory capacity can be 

modeled in a neural network. As we will explain, our model uses a different approach, directly limiting 

the capacity of, or physical access to, previous states instead of limiting the network's temporal window 

of access to these states. Our approach is, in a sense, similar to that of the DevLex models of word and 

meaning acquisition (Li, Farkas & MacWhinney, 2004; Li, Zhao & MacWhinney, 2007), which utilize 

growing self-organizing maps to represent semantics and phonology. These maps grow by adding new 

units to accommodate storage of new lexical and semantic representations; as such, the growth 

involved more closely resembles long-term memory growth. Our model, in contrast, grows by adding 

new units that form the substrate for working memory. 

There have also been a few notable neural network models that touch on the topic of 

grammatical gender. MacWhinney et al (1989) presented two neural network models of the acquisition 

of gender, case, and number in German. Both of these models learned to predict the article associated 

with a given noun, one using hand-coded semantic, phonological, morphological, and case cues, and 

the other using only observable data in the form of a complete phonological representation of the input 

noun along with some semantic and case cues. Both models succeeded at learning the nouns they were 

trained on, and also generalized very well to new nouns. The second model, without the hand-coded 

cues, outperformed the first. Unfortunately, the static phonological representations in this model only 

allow it to be applied to words of two syllables or fewer; our model employs temporal phonological 

representations that allow any word to be encoded. Additionally, Sokolik & Smith (1992) trained a 

feed-forward neural network to identify a corpus of French nouns as either masculine or feminine. 

Their study, however, has been widely criticized (Carroll, 1995; Matthews, 1999) for, among other 

things, using orthographic input, giving explicit gender feedback, and building in language-specific 

knowledge about gender classes. We believe that our approach adequately addresses these and other 
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concerns, resulting in a model that only utilizes the information available to language learners. 

3  Methods 

Our intent in the present work is to use neural network models to understand any sensitive 

periods that arise due to the effects of cross-linguistic interference and aspects of memory 

development. The first of these two factors is straightforward to implement: Simply teach a network to 

perform the same task on two languages. By varying the amount of time before the L2 is introduced, 

we can vary the expected amount of entrenchment of the L1. The second factor is developmental, and 

involves changes to a neural network's structure and connectivity over the course of the experiment, 

above and beyond the connection-weight changes that occur during normal training. So that readers 

who are perhaps only passingly familiar with neural networks can fully grasp the developmental 

aspects of the model, we include a primer on neural networks in section S.3 of the supplemental 

material. 

3.1  Our Model 

In the present work we use a type of recurrent neural network architecture called the Long Short 

Term Memory (or LSTM; Hochreiter & Schmidhuber, 1997; Gers & Cummins, 2000; Gers & 

Schmidhuber, 2001). The LSTM architecture is similar in many ways to the well-known simple 

recurrent network (SRN) architecture (Elman, 1990), with two notable differences. First, the recurrence 

in LSTM comes not from a hidden layer and a copy-back context layer as in an SRN, but instead from 

hidden layer units, called MEMORY CELLS, that maintain their individual states across time-steps. This 

difference reflects a computational specialization of LSTM towards use as a substrate for working 

memory, as the maintenance of information across time is less noisy than in SRNs (Munakata, 2004). 

Combined with the slow weight changes characteristic of most neural network models, this makes the 

LSTM architecture well suited to its combined use in this study as a long-term categorization memory 
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for learning the gender assignment and agreement tasks and as a working memory for temporarily 

storing the information relevant to each individual classification. The second difference is that each 

memory cell in an LSTM hidden layer is supplemented by a set of up to three additional units which 

serve to multiplicatively gate the inputs into, outputs from, and state retention of each memory cell. 

The network can learn to use these multiplicative gates to actively select important information to 

maintain in working memory while simultaneously reducing the kinds of interference that disrupt 

important working memory representations. A network composed of memory cells can maintain 

coherent working memory representations of important inputs for longer periods of time than 

architectures like the SRN. A more detailed primer on LSTM can be found in supplementary material 

section S.4. 

Our model learns by updating its connection weights based on the principle of gradient descent, 

utilizing back-propagation of error signals via an algorithm called LSTM-g (Monner & Reggia, 2011). 

While back-propagation has widely been regarded as neurobiologically implausible, Xie & Seung 

(2003) revealed gradient descent using back-propagation to be equivalent to a method of Hebbian 

learning utilized in neurobiologically plausible systems such as Leabra (O’Reilly & Frank, 2006). In 

light of this, it makes sense to view our use of back-propagation as a computationally expeditious 

equivalent of more neurobiologically plausible learning methods. 

Since the aim of our model is to learn gender properties from speech stimuli, our neural 

network model is given an input layer able to represent one phoneme of speech at a time. The network 

is presented with a sequence of such phonemes, one after another, with the sequence as a whole 

representing a word or noun phrase. This is analogous to listening to spoken sentence fragments. The 

specific network architectures and desired outputs will differ by experiment and, as such, will be 

described in detail for each case in Section 4. 
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3.2  Development and Network Architecture 

Since one aim of our model is to investigate the influence of development on learning of gender 

phenomena, we will next discuss the analogues of maturation in neural networks. Most neural network 

models have a fixed number of units and connections for the duration of training. Training such a 

network, starting from randomly assigned connection weights, is tantamount to waiting until a human 

learner is an adult, or at least fully neurologically developed in the relevant areas, before exposing him 

or her to any language stimuli. To address cases where language learning happens along with 

development, we also need to examine situations where the network structure develops during training. 

In the following paragraphs we examine a few ways of doing this. 

In addition to the NO GROWTH condition, where all of the network’s units and connections are 

present at the start of training, we examine a UNIT GROWTH condition in which the network begins with 

a much smaller number of units and connections (see Figure 2, top row). During the training regimen, 

new units and their associated connections are gradually added to the network until it reaches maturity, 

i.e. its maximum number of units and connections, equivalent to the numbers present in the no growth 

condition. Here, a new unit being added to the network is not necessarily analogous to neurogenesis in 

humans; instead, we take the view that some of the new connections, created through a process 

analogous to dendritic outgrowth (Uylings, 2006), happen to project to existing units outside our 

current view of the network, thus recruiting them for use in processing. 

Insert Figure 2 about here 

The unit growth condition described above confounds two variables of interest on the cognitive 

level. Recall that the activations of units in a recurrent neural network like ours are the basis of working 

memory. The network recruits new units during the maturation process, increasing the amount of 

information it can process at any given instant. We might reasonably expect this to correlate with an 
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increase in cognitive measures of working memory capacity during training. Since these networks start 

with a small working memory and increase its capacity during training, we can evaluate the less is 

more hypothesis (Newport, 1990) for our model. From our perspective, this hypothesis admits two 

distinct and independently controllable factors that could lead to better final language performance: (1) 

starting with a small working memory, and (2) allocation of new working memory resources during 

learning. Our unit growth condition possesses both factors, so to investigate them separately, we 

introduce a third network development condition, termed UNIT REPLACEMENT, that has only the second 

factor. This condition is not intended to correspond to human maturation; rather, it is included merely 

as a control to help us separate the effects of starting small from the effects of introduction of untrained 

resources. In this condition, depicted in Figure 2 (middle row), the network starts in the same state as 

the no growth condition, with its full complement of units and connections, and thus its full working 

memory capacity. Periodically, units and their associated connections are removed from the network 

and replaced with new units and fresh, untrained connections. This happens at a rate commensurate 

with the rate at which units are added in the unit growth condition. Thus, in both conditions fresh 

resources are introduced over time, but where the unit growth condition uses these resources to grow 

the network from its initially small size, the unit replacement condition accepts these fresh resources 

and discards an equal amount of its existing, trained resources, thereby maintaining a constant size. 

Since the effective size of the working memory does not change in the unit replacement condition, it 

allows us to determine if periodic introduction of fresh working memory resources alone, without 

starting small, can produce any significant benefits. 

Working memory is not the only cognitive variable that changes as part of the unit growth 

condition. The new units that each network recruits must be wired up using new connections. 

Connections, as the reader will recall, are the basis of long-term memory capacity in a neural network. 
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Thus, a network from our unit growth condition adds both working memory and long-term memory 

capacity during training. To tease apart these variables, we examine a fourth condition, termed the 

CONNECTION GROWTH condition, in which all units are present from the beginning but few of the 

possible connections exist (see Figure 2, bottom row). Since all units are incorporated from the 

beginning, the network's working memory capacity is fully developed from the start. During training, 

the network grows new connections at the same rate as in the unit growth condition, giving the network 

access to new long-term memory storage and allowing us to directly gauge the effects of long-term 

memory maturation. In addition, this allows us to indirectly assess the contributions of working 

memory maturation (and compound effects) by subtractive analysis with the unit growth and no growth 

conditions. 

4  Experiments and Results 

4.1  Gender Assignment 

In our first set of experiments we investigate how well neural networks can learn to perform a 

gender assignment task using realistic sources of information. These networks take single nouns as 

input and use that information to predict which determiners can appear with that noun. Since nouns 

commonly occur with determiners in our target languages, French and Spanish, both the input and the 

output data are readily available to any learner by simply listening to everyday speech. After training, 

we determine the network's assignment of gender to individual nouns by presenting those nouns as 

input and observing the network's predictions for determiner pairing. The gender of the most strongly 

predicted determiner is taken to be the network's gender assignment for the input noun. 

Our approach is similar to that taken by the third model from MacWhinney et. al. (1989) in that 

our model uses the complete phonological form of a noun to predict the article to be used with that 

noun. We diverge from this earlier model in a few important ways. First, we eschew semantic features 
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to investigate what can be learned from phonology alone. Even though phonology is predictive for the 

majority of words in our target languages, this choice deprives our model of information that learners 

are known to use (see Section 2.2). Second, we present the input noun as a temporal sequence of 

phonemes instead of a single phonological pattern, the latter of which will always have trouble 

representing long words or those that do not conform to the prespecified representational form. In 

addition, our approach corrects the most severe issues with the model of gender assignment by Sokolik 

& Smith (1992). Where their approach was criticized (Carroll, 1995; Matthews, 1999) for using 

orthographic input, we use phonemic input instead. Where their network came a priori equipped with 

knowledge of the genders of the training language - and indeed the knowledge that grammatical gender 

exists at all - our model has no such built-in knowledge. Finally, where their model required explicit 

feedback about the genders of individual words, our model relies instead upon the co-occurrence of 

gendered articles with nouns in order to deduce gender assignments. As a result of these differences, 

our model is more closely aligned with the real-world circumstances of human language learning in 

most contexts. 

An input noun is presented to the network as a temporal sequence of phonemes. Each such 

phoneme is represented as a set of binary auditory features, with the activations of the network's input 

layer adjusted to reflect the feature set of each phoneme in turn. We use this representation because 

such features are universal in the sense that various configurations of these features can represent 

virtually any phoneme. As such, units representing these features could potentially be a built-in 

component of the brain of a language learner, or could be learned. That said, we only included enough 

features here to distinguish all phonemes in our target languages. The full set of phonemes and features 

are detailed in Table 1. After processing an entire sequence of phonemes representing the input noun, 

the network activates units in its output layer that correspond to determiners that it predicts to be 
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compatible with the input noun. The network learns to perform this behavior by observing determiner-

noun pairings and adjusting its connection weights accordingly. 

Insert Table 1 about here 

The left half of Figure 3 shows the general architecture of the networks we train to perform this 

gender assignment task. The networks have an input layer of units corresponding to the on and off 

states of the features that make up the input phonemes. Units in the input layer project to units in a 

single hidden layer of memory cells. The intrinsic self-recurrence of the memory cells forms the 

substrate for working memory in the network. Finally, the hidden layer projects forward to the output 

layer which consists of 9 units representing the definite and indefinite singular determiners of our target 

languages: le, la, l', un, and une in French and el, la, un, and una in Spanish. We do not posit that units 

representing these words could be built into the brains of language learners, nor that the words are 

represented in single units. However, since these determiners form a small closed class of words, we 

feel it is not too large a leap to presume that the learner represents these frequent determiners as distinct 

entities before much gender learning takes place. Our single-unit representation for each determiner is 

the simplest possible in this context, though other representations would likely work as well. 

Insert Figure 3 about here 

For this set of experiments, we used the 600 French words from the Sokolik & Smith (1992) 

paper as the input data for our model, and a set of 600 equivalent words from Spanish. For each trial 

during training, we first select a language and then select a noun at random from our corpus. We pair 

the noun with either a gender-matched definite or indefinite determiner from the appropriate language 

to form a simple noun phrase. The noun is given as input to the network, which then predicts applicable 

determiners and adjusts its weights in such a way that, in the future, it will be more likely to predict the 

determiner that actually co-occurred with the input noun. A network is considered to have assigned the 
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correct gender for an input noun if an article of the appropriate gender is most active after presentation. 

To determine a baseline level of performance on the gender assignment task, we trained 

networks on either French or Spanish only and recorded their performance. The results are shown in 

the left half of Figure 4. As one would expect, networks trained on French alone scored well in excess 

of 90% after training, while scoring at chance on Spanish; similarly, Spanish-trained networks 

performed well on their native language and at chance on French. It is worth noting that Spanish 

performance was consistently a few percentage points better than French performance, likely due to the 

phonemic cues to gender assignment in Spanish being simpler and more reliable than those in French. 

Performance was consistent across the four development conditions, suggesting that, alone, network 

development has little impact on outcomes for the gender assignment task, at least in the first language.  

Insert Figure 4 about here 

With a baseline level of performance established for networks that are 'native' to either French 

or Spanish, we next investigated the performance of bilingual networks under a number of different 

learning conditions designed to assess the role of L1 entrenchment. Each condition varies the length of 

time t which the network spends learning the task on L1 alone before L2 is introduced (Zhao & Li, 

2010). We describe the conditions in terms of two periods, the first of which consists of training only in 

L1 for t trials, where t varies from widely across conditions. This is immediately followed by the 

second period, in which L1 and L2 trials are mixed with equal probability. The duration of the second 

period is always 2 million trials in an effort to ensure that the networks have time to reach peak 

performance on both languages. While this second mixed training period will undoubtedly create 

competition and interference between the two languages, the amount of interference should be the same 

in each condition because the size and mix proportion of the second training period are the same across 

conditions. In contrast, the amount of L1-only training prior to the introduction of L2 is varied across 
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conditions, meaning that networks that start with different values of t in will end up in different states - 

reflecting differing levels of entrenchment - when L2 training begins. 

A network whose training regimen has t = 0 is a native bilingual in the sense that L1 and L2 are 

presented at precisely the same time, and in the same proportions. Thus, such a network should exhibit 

no L1 entrenchment. Networks trained with higher values of t, having had a longer time with exposure 

only to L1, should exhibit more entrenchment. Given this, the prevailing ideas about L1 entrenchment 

offer a number of predictions about the final, peak L1 and L2 performance of the networks: 

1. Networks’ final L1 performance should not decrease with as t increases; 

2. Networks trained with t = 0, as native bilinguals, should not exhibit impairment in either 

language with respect to the other; and, 

3. Networks should show increasing degradation of final L2 performance as t increases, at least 

until the networks have mastered L1 to a point at which the effect of entrenchment saturates. 

These predictions can be investigated by plotting the final L1 and L2 performance of fully 

trained networks on the gender assignment task versus the value of t with which they were trained. We 

trained 30 separate networks for each of 15 values of t as well as for each of the four maturation 

conditions and each of two languages; thus a total of 3,600 networks were trained to produce the 

following figures. For conditions in which the network matures during training, each of these networks 

begins training in its most immature state and develops over the course of the first 400k trials, at which 

point it reaches maturity - i.e. architectural parity with the networks in the no growth condition. Thus, 

some networks in the connection growth and unit growth conditions (i.e. those with t = 0) are first 

exposed to L2 in their most immature state, while others (i.e. t = 400k and above) are not exposed to L2 

until after reaching maturity.  

After both training periods were complete, we recorded the fraction of inputs that each network 
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assigned the correct gender, for both languages, and plotted them in the left half of Figure 5. These 

graphs depict the final performance of the networks on the y-axis versus the value of t - i.e. the duration 

of the L1-only training period and thus the delay before L2 onset relative to L1 - on the x-axis. Thus, 

the expected L1 entrenchment increases from negligible to maximal as we move from left to right in 

each figure; another way of saying this is that the networks towards the left of the x-axis are closer to 

true bilinguals whereas the networks closer to the right edge are late L2 learners. The y-axis values 

always depict final performance after the conclusion of training. These graphs show fitted curves for 

each of the different network maturation conditions, and for each such curve, the shaded area behind it 

represents the 95% confidence interval. 

Insert Figure 5 about here 

To examine the first prediction above, we first look at the performance of the various networks 

in their native language. Table 2 shows the results of a statistical analysis on the performance results, 

comparing the means for each condition at the first and last t-values using a two-sample t-test. In 

addition to statistical significance, the table also provides an indication of the magnitude of the 

performance change. This answers the question, for each condition, of whether performance is 

statistically flat, increasing, or decreasing as t values increase. The table also shows codes for the 

magnitude of the significant changes in performance. The prediction of non-decreasing performance 

with increasing t appears to be largely borne out. When native language and task match, performance is 

flat or occasionally weakly increasing as t values rise. Figure 5 shows us that, as with the monolingual 

networks, bilingual networks have a slightly harder time learning French than Spanish as an L1. 

Differences in Spanish performance between the different maturational variants of Spanish-native 

networks were minimal, while the French-native networks that grew their working memory capacity 

during training showed a slight disadvantage. However, the expected general pattern of flat or 
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improving performance with increasing t held for all conditions. 

Insert Table 2 about here 

We can investigate the second prediction above by examining each network's performance on 

its second language. We do this by comparing second-language performance of networks with t = 0 on 

the x-axis to the native-language performance. We see that across all maturational conditions, the true 

bilingual networks (those with t = 0) perform well when compared the native networks in both 

languages, lending support to the second prediction above. 

Moving on to the third prediction, we can clearly see a t-related performance deficit in the no 

growth condition for L2 French; increasing Spanish exposure before French is introduced causes the 

final French performance of the network to decrease at a rate that is at first rapid but eventually slows 

for larger delays. The maturational properties in play for the connection growth and unit growth 

conditions, however, appear to have helped these networks compensate for the expected declines in 

French performance due to Spanish entrenchment. Networks in the unit replacement condition tended 

to perform at levels comparable to the no growth networks, suggesting that introduction of new 

working-memory resources without starting small may not be sufficient to gain a significant reprieve 

from the deleterious effects of increasing L1 entrenchment. In the case where French was the L1 and 

Spanish the L2, no appreciable t-related performance decreases were observed. We expect that this is 

due again to the relative ease of the task for Spanish as compared to French. 

At least in the case of French as an L2, the data shown in Figure 5 and Table 2 seem to support 

both the predictions of performance declining due to increased entrenchment and of maturation during 

learning helping to overcome these difficulties. Next we trained networks on the more difficult task of 

gender agreement, the results of which are reported in the next section. 

4.2  Gender Agreement 
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Our second set of experiments explores how neural networks perform on a gender agreement 

task. During a trial, networks in these experiments receive a noun phrase (e.g. el mecanismo interno in 

Spanish) presented as an unsegmented sequence of phonemes (e.g. [elmekanismointeɾno]) as input. 

The network's job at every point in this phoneme sequence is to predict the new few phonemes that it 

will hear. As such, the network uses a phonemic representation of everyday speech as both the input 

and the training signal. After training, the network's gender agreement performance is evaluated using 

noun phrases of the form determiner-noun-adjective - common constructions in our target languages of 

Spanish and French. To determine gender agreement, we give the network the determiner and noun as 

input, followed by the portion of the adjective that is gender-neutral, and ask the network to predict the 

correct ending for the adjective. If the network predicts the gender-appropriate ending more strongly 

than the gender-inappropriate ending, we consider the network's answer to be correct. 

The noun phrases we used as training data for the gender agreement task were extracted from 

the French and Spanish versions of Wikipedia (2011). We downloaded archives containing the 

complete text of each version of Wikipedia and applied part-of-speech tags to each word using 

TreeTagger (Schmid, 1994). We then extracted all noun phrases of the forms determiner-noun, 

determiner-noun-adjective, and the less frequent determiner-adjective-noun, where the determiner is 

one from Table 3. From this list of noun phrases we removed any phrases containing words that were 

not in our language dictionaries - Lexique 3 for French (New, 2006) and CUMBRE for Spanish 

(CUMBRE, n.d.). Finally, we extracted the most frequent 100,000 noun phrases for each language. 

These phrases comprise the training data. On each training trial, we chose a phrase probabilistically, 

based on the phrases' corpus frequencies; we used this phrase as the input - and training signal - for the 

network on that trial. 

Insert Table 3 about here 
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The right side of Figure 3 depicts the architecture of the networks trained on the gender 

agreement task. The input layer is the same as it was for the gender assignment experiments, with each 

input unit corresponding to a binary auditory feature of a phoneme. These networks, however, have two 

hidden layers of memory cells instead of one. This is because the gender agreement task involves two 

separate levels of segmentation of the input. To perform the task effectively, we expect that any learner 

needs to divide the phoneme sequence first into morphemes and words and, at a higher level, into noun 

phrases in which gender agreement must be maintained. Previous experiments with these types of 

networks on language tasks (Monner & Reggia, 2011) have shown a network with two hidden layers to 

be more effective in this case than networks with a single hidden layer. 

The network's output layers are each identical to the input layer because the network is 

predicting upcoming phonemes. There are two such output layers because the network must predict not 

only the next phoneme that will occur in the input, but the phoneme after that as well. We require the 

network to make predictions of two future phonemes because some of the gendered adjective endings 

that we would like to predict consist of two phonemes. For example, the French adjective for 

"particular" is particulier [paʁtikylje] in the masculine and particulière [paʁtikyljɛʁ] in the feminine; 

we can see in the phonetic spellings that the gendered endings of these adjectives differ across two 

phonemes, with [-e] ending the masculine form and [-ɛʁ] ending the feminine form. Since we can only 

show the network the gender-neutral portion of the phoneme sequence (i.e. [paʁtikylj-]) without giving 

away the gendered form intended by the speaker, we must have the network predict two subsequent 

phonemes (either of which may be null if subsequent phonemes don't exist) in order to capture 

gendered endings with two phonemes such as [-ɛʁ]. 

When evaluating performance on the gender agreement task after training, we use only phrases 

of the determiner-noun-adjective form because it is the only form that is adjective-final. Our testing 
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paradigm requires an adjective-final form because the network must predict the gender-appropriate 

ending of the last word, and only adjectives generally have two distinct gendered endings. Gender-

neutral adjectives, and adjectives where the two gendered forms are orthographically distinct but 

phonetically identical (e.g. in French, the masculine architectural and the feminine architecturale are 

both pronounced [aʁʃitɛktyʁal]), are present during gender agreement training but ignored during the 

performance evaluation. 

To determine a baseline level of performance on the gender agreement task, we trained sets of 

networks on either French or Spanish only and recorded their performance. The results are shown in 

the right half of Figure 4. As was the case with the gender assignment task from the previous section, 

we find here that networks trained on French do well on French and perform at chance on Spanish. 

Networks trained on Spanish perform as expected on that language and do significantly worse on 

French. 

We use the same experimental setup as on the gender assignment task to investigate the effects 

of L1 entrenchment alone (i.e. the no growth condition) and together with network maturation (i.e. the 

unit growth, unit replacement, and connection growth conditions) on the gender agreement task. As 

before, training consists of two periods, the first consisting of t trials in which inputs come exclusively 

from the designated L1, and the second consisting of 2 million trials where inputs may be drawn from 

either language. We trained 30 networks in each maturation condition and for each value of t, the 

duration of the initial L1-only training period. The results are shown in the right half of Figure 5. 

We can examine the networks' performance on their first languages, broken out by language 

and maturation condition as before, by looking at the bottom half of Table 2. As expected, we do not 

see decreasing performance with increasing t in any of the conditions where the task and native 

language match. 
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Next we examine the final performance scores on L2 for networks in each condition of the 

gender agreement task as a function of t on the x-axis. The results for both languages here are similar to 

what we observed in the gender assignment task for the case of L2 French. The mature networks in the 

no growth condition show a marked susceptibility to L1 entrenchment, with L2 performance decreasing 

by as much as 17% as t is increased, delaying the onset of L2 relative to L1. However, the networks in 

the unit growth condition were largely able to mitigate this performance decrease by introducing new 

units and connections during learning. Performance of networks in the connection growth condition fall 

between these two. The addition of new connections to the networks appears to successfully stave off 

entrenchment effects when the level of entrenchment is small, but for values of t > 200,000 the 

entrenchment effects again start to become apparent. This tells us that addition of new units and new 

connections both help to counteract deficits due to entrenchment. Viewed from the cognitive 

perspective, growth in long-term memory capacity - in the connection growth condition - during 

training helped to mitigate the effects of L1 entrenchment, as did growth in working memory capacity, 

as evidenced by the superior performance of the unit growth condition over the connection growth 

condition for higher values of t. However, as shown by the unit replacement networks again tending to 

track the performance of the no growth networks, the addition of fresh neural resources is not all that is 

required to reap a performance benefit. Instead, it seems that starting small, either in terms of working 

memory capacity or long-term memory capacity, or both, is an essential factor that, combined with 

growth of neural resources, leads to the performance increase. 

5  Discussion 

The data presented in Section 4 (with one exception, discussed in detail below) appears to 

support the predictions of established ideas of L1 entrenchment: Increasing levels of entrenchment of 

the L1 caused increasing difficulty in acquiring an L2. The most dramatic of these can be seen clearly 
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in the no growth conditions, where we witness an initially steep decline in learnability of the L2 task as 

time spent on the L1 task increases. The simulations results also largely agree with conclusions of 

empirical studies of gender learning in both early and late bilinguals (discussed in section S.2 of the 

supplementary material) in that early L2 learners perform much like native speakers, whereas later L2 

introduction leads to poorer performance. 

The simulations also bore out the predictions of the less is more hypothesis, with the networks 

that undergo working memory development outperforming those that started with full-sized working 

memory capacities. Our experimental efforts to separate the effects of starting with a small working 

memory from those of simply adding fresh memory resources showed a distinct advantage to growth 

combined with starting small. This not only provides a small but important clarification to the 

mechanism behind the less is more hypothesis, but is a result for which an empirical investigation 

would be difficult if not impossible. We treat the results pertaining to each hypothesis in a separate 

section below. 

5.1  Entrenchment 

As mentioned earlier, our simulations provided one exception to our hypothesis about 

entrenchment, in the form of French-native learners of the Spanish gender assignment task attaining 

near-native-like performance levels on their L2 task. This may be explained, in whole or in part, by the 

inherent similarity of French and Spanish; see our discussion of the empirical study by Sabourin, 

Stowe, and de Haan (2011) in section S.2 of the supplementary material. When two languages are very 

similar, one might expect L2 learning to be easier where it agrees with L1 and harder where it 

disagrees. For example, the fact that a noun ending in [o] is a very reliable predictor of masculine 

gender in both French and Spanish may underlie the unexpected ease with which our French-native 

networks learned the Spanish gender assignment task: Since masculine nouns ending in [o] are so 
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prevalent in Spanish, the transfer of this concordant rule from L1 French would immediately improve 

accuracy by leaps and bounds. The reverse - transferring the rule from L1 Spanish to L2 French - 

would not be as beneficial since masculine nouns ending in [o] are far less prevalent in French than in 

Spanish, thus leading to less of an impact on the learner's overall accuracy. On the other hand, it may 

be more difficult for native French speakers to learn Spanish's association between [a] and feminine 

gender given that [a] is associated with the masculine in French. In our simulations, this rule may have 

had less of an impact because [a] is a less reliable cue in French; or perhaps it is the case that 

discordant rules from L1 can be easily overcome. The simulations reported here certainly do not fully 

explore interactions between language similarity, rule transfer, and ease of L2 learning. To better grasp 

the significance of interactions between concordant and discordant rules like the examples above, we 

hope in the future to study an expanded model that includes more languages of varying levels of 

similarity. 

5.2  Memory Development 

While our modeling approach does not directly implement cognitive constructs such as working 

memory capacity, we argued in Section 3.3 that the connection growth condition could be reasonably 

conceived as representing growth from an initially small long-term memory capacity, and the unit 

growth condition as growth of both long-term and working memory capacities from small beginning 

states. Allowing the networks to mature in either of these conditions helped to mitigate the negative 

impacts of L1 entrenchment, especially for longer delays in L2 onset. The fact that the connection 

growth condition generally improves upon the no growth condition suggests to us that growth of long-

term memory capacity may be a key maturational factor during language learning. For the longest 

delays, the unit growth condition appears to have had the greatest positive impact, which suggests to us 

that growth of working memory capacity also has a positive influence in combating entrenchment 
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effects. 

The unit replacement condition, on the other hand, demonstrated the effects of adding fresh 

long-term and working memory resources to the network without starting small, and without changing 

the network's overall size. Since the networks in this condition did not do substantially better than those 

in the no growth condition, we have to conclude that the only thing lacking in the unit replacement 

condition - beginning from resources of modest capacity, or starting small - is an essential factor 

underlying the performance gains made by the unit growth and connection growth networks. This lends 

support to the less is more hypothesis, and further constrains it in the sense that it is now clearer that 

initial size is crucial; the effect is not caused by resource acquisition alone.  

The less is more hypothesis is usually presented at the cognitive level, suggesting that a system 

with limited cognitive resources will latch on to the low-hanging organizational fruit, learning 

representations efficient enough to accommodate its small memory capacity. This can serve as a boon 

later on, when new memory capacity is added and can tackle more complex stimuli. This proposal also 

makes intuitive sense at the level of neural information processing for a variety of reasons. A network 

that has its full complement of resources when learning begins naturally learns to use all the resources 

at its disposal to widely distribute its learned interpretations of its L1 experiences. If an L2 is 

introduced later, the distributed L1 experience cannot be easily or quickly consolidated to use only a 

subset of the neural resources so as to free up some of these for the L2 alone. Instead, the L2 and L1 

experiences intermix and interact, exacerbating L1 entrenchment effects and prolonging performance 

deficits in L2 due to resource competition from L1 (Thomas, 2009). On the other hand, a network that 

begins training with more modest resources will be forced to attempt to encode the L1 using only the 

limited resources available. Though these may initially be insufficient for a full understanding of L1, 

the limitations will force the network to adopt more efficient and less widely distributed encodings of 
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the L1. This may entail segmenting the input into smaller generative chunks, like phonemes and 

morphemes. This consolidation of L1 knowledge in the resources that were added early leaves the 

later-added neural resources free to adapt to novel data such as that presented by an L2. If this story is 

correct, starting with fewer resources and building them up during language learning are key strategies 

to developing more modular representations for each language, which helps to avoid the deleterious 

effects of L1 entrenchment and resource competition with L2.  

Our simulation results also showed that our networks’ final performance when learning only 

one language was generally the same or worse in the developing conditions compared to the pre-

developed no growth condition. This stands apart from previous results showing that late L1 

acquisition of sign languages is impaired proportionally to age of acquisition (e.g. Mayberry, 1993; 

Mayberry & Lock, 2003), the explanation for which is thought by many to be developmental in nature. 

We see two potential explanations for this discrepancy. The first and most obvious is that our model 

does not account for the mechanism, developmental or otherwise, that underlies these impairments in 

late L1 acquisition. A second possibility that affords our model some explanatory power rests on the 

idea that the observed performance deficits in a late-learned L1 are due to entrenchment and/or 

interference from home sign systems developed by the learners prior to exposure to a conventional sign 

language (Seidenberg & Zevin, 2006). Under this view, a late-learned L1 functions more like an L2, 

creating a situation that is more directly comparable to our bilingual networks than the monolingual 

ones, which had no prior exposure to any type of communication system which could interfere or 

become entrenched. While this interpretation minimizes the discrepancy between our model and 

empirical findings, it remains a controversial hypothesis regarding the origin of late L1 learning 

deficits. 

We do not mean this work to in any way suggest that entrenchment and memory development 
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explain all the age effects we see in second language learning. As many researchers have pointed out, 

cognitive maturation is typically confounded with a variety of other changes that take place in the same 

time frame, such as social development, changing patterns of input and interaction, and schooling in the 

L2. While we acknowledge that the factors we have studied here do not explain all the age effects 

observed in humans, we do believe they are part of a larger picture involving many of the variables 

outlined above. Our simulations confirm that entrenchment - a natural consequence of learning 

different tasks in stages - can indeed cause large deficits in second language performance. Our 

comparison of developmental conditions bears out the predictions of the less is more hypothesis, 

showing that memory development - that is, starting from a small memory and growing it during 

learning - can help to prevent disruptions due to entrenchment. While much more work is necessary to 

determine how cognitive maturation contributes to age effects, this study contributes to a better 

understanding of how memory development in particular could be an important part of that picture. 

References 

Abrahamsson, N., & Hyltenstam, K. (2008). The robustness of aptitude effects in near-native second 

language acquisition. Studies in Second Language Acquisition, 30(4), 481-509. 

Abrahamsson, N., & Hyltenstam, K. (2009). Age of onset and nativelikeness in a second language: 

Listener perception versus linguistic scrutiny. Language Learning, 59(2), 249-306. 

Avons, S.E., Wragg, C.A., Cupplesa, W.L., and Lovegrove, W.J. (1998). Measures of phonological 

short-term memory and their relationship to vocabulary development. Applied 

Psycholinguistics, 19, 583–601 

Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication 

Disorders, 36, 189–208. 

Baddeley, A.D., Gathercole, S.E. and Papagno, C. (1998) The phonological loop as a language learning 



36 

 

device. Psychological Review, 105, 158–173 

Baker, W. (2010). Effects of age and experience on the production of English word-final stops by 

Korean speakers. Bilingualism: Language and Cognition, 13(3), 263-278. 

Bley-Vroman, R. (1988). The fundamental character of foreign language learning. In W. Rutherford & 

M. Sharwood Smith (Eds.), Grammar and second language teaching: A book of readings (pp. 

19-30). New York: Newbury House. 

Brown, G.D.A. and Hulme, C. (1996). Non-word repetition, STM, and age-of-acquisition: A 

computational model, In S.E. Gathercole (Ed.), Models of short-term memory (pp. 129–148), 

Psychology Press. 

Carroll, S. E. (1995). The hidden dangers of computer modeling: Remarks on Sokolik and Smithʼs 

connectionist learning model of French gender. Second Language Research, 11(3), 193-205. 

Chen, L., Shu, H., Liu, Y., Zhao, J., & Li, P. (2007). ERP signatures of subject-verb agreement in L2 

learning. Bilingualism: Language and Cognition, 10(2), 161-174. 

Cochran, B. P., McDonald, J. L., & Parault, S. J. (1999). Too smart for their own good: The 

disadvantage of a superior processing capacity for adult language learners. Journal of Memory 

and Language, 41, 30-58. 

Conway, A.R.A., Cowan, N., & Bunting, M.F. (2001). The cocktail party phenomenon revisited: The 

importance of WM capacity. Psychonomic Bulletin & Review, 8, 331-335. 

Corbett, G. (1991). Gender. New York: Cambridge University Press. 

Cumbre (n.d.). Corpus del Español Contemporáneo de España e Hispanoamérica. Madrid: SGEL. 

DeKeyser, R. M. (2000). The robustness of critical period effects in second language acquisition. 

Studies in Second Language Acquisition, 22(4), 499-533. 

DeKeyser, R. M. (2012). Age effects in second language learning. In S. Gass & A. Mackey (Eds.), 



37 

 

Handbook of second language acquisition (pp. 442-460). London: Routledge. 

DeKeyser, R. M., & Larson-Hall, J. (2005). What does the critical period really mean? In J. F. Kroll & 

A. M. B. de Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 89-108). 

Oxford: Oxford University Press. 

DeKeyser, R. M., Alfi-Shabtay, I., & Ravid, D. (2010). Cross-linguistic evidence for the nature of age 

effects in second language acquisition. Applied Psycholinguistics, 31(3), 413-438. 

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A. (2000). A neural basis for general 

intelligence. Science, 289(5478), 457. 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211. 

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. 

Cognition, 48, 71-99. 

Engle, R.W. (2002). Working memory capacity as executive attention. Current Directions in 

Psychological Science, 11(1), 19-23. 

Gathercole, S. E., & Pickering, S. J. (2000). Assessment of working memory in six- and seven-year old 

children. Journal of Educational Psychology, 92, 377–390. 

Gathercole, S.E. (1999). Cognitive approaches to the development of short-term memory.  Trends in 

Cognitive Sciences 3(11), 410-419. 

Gathercole, S.E. and Baddeley, A.D. (1993). Working memory and language, Erlbaum. 

Gers, F. A., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural 

Computation, 12(10), 2451-2471. 

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple context-free and 

context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. 

Goldowsky, B. N., & Newport, E. L. (1993). Modeling the effects of processing limitations on the 



38 

 

acquisition of morphology: The less is more hypothesis. In E. Clark (Ed.), Proceedings of the 

24th Annual Child Language Research Forum (pp. 124-138). Stanford, CA: CSLI. 

Guion, S. G., Harada, T., & Clark, J. J. (2004). Early and late Spanish-English bilinguals' acquisition of 

English word stress patterns. Bilingualism: Language and Cognition, 7, 207-226. 

Hakuta, K., Bialystok, E., & Wiley, E. (2003). Critical evidence: A test of the critical-period hypothesis 

for second-language acquisition. Psychological Science, 14(1), 31-38. 

Harley, B. (1979). French gender ‘rules’ in the speech of English-dominant, French-dominant and 

Monolingual French-speaking children. Working Papers in Bilingualism, 19, p. 129-156. 

Hernandez, A., Li, P., & MacWhinney, B. (2005). The emergence of competing modules in 

bilingualism. Department of Psychology. Paper 210. http://repository.cmu.edu/psychology/210  

Hernandez, A., Li, P. (2007). Age of acquisition: its neural and computational mechanisms. 

Psychological Bulletin, 133(4), 638–650. 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-

1780. 

Hudson Kam, C. L., & Newport, E. L. (2005). Regularizing unpredictable variation: The roles of adult 

and child learners in language formation and change. Language Learning and Development, 

1(2), 151-195. 

Hudson Kam, C. L., & Newport, E. L. (2009). Getting it right by getting it wrong: When learners 

change languages. Cognitive Psychology, 59, 30-66. 

Hyltenstam, K., & Abrahamsson, N. (2003). Maturational constraints in second language acquisition. 

In C. J. Doughty & M. H. Long (Eds.), Handbook of second language acquisition (pp. 539-

588). Oxford, UK: Blackwell. 

Iverson, P., Kuhl, P. K., Akahane-Yamada, R., Diesch, E., Tohkura, Y., Kettermann, A., et al. (2003). 



39 

 

A perceptual interference account of acquisition difficulties for non-native phonemes. 

Cognition, 87, B47-B57. 

Jia, G., & Aaronson, D. (2003). A longitudinal study of Chinese children and adolescents learning 

English in the United States. Applied Psycholinguistics, 24(1), 131-161. 

Jia, G., Aaronson, D., & Wu, Y. (2002). Long-term language attainment of bilingual immigrants: 

Predictive variables and language group differences.Applied Psycholinguistics, 23(4), 599-621. 

Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The 

influence of maturational state on the acquisition  of English as a second language. Cognitive 

Psychology, 21, 60-99. 

Johnson, J. S., & Newport, E. L. (1991). Critical period effects on universal properties of language: The 

status of subjacency in the acquisition of a second language. Cognition, 39(1991), 215-258. 

Kane, M. J. & Engle, R. W. (2003). Working memory capacity and the control of attention: the 

contributions of goal neglect, response competition, and task set to Stroop interference. Journal 

of Experimental Psychology: General, 132, 47-70. 

Kareev, Y., Lieberman, I., & Lev, M. (1997). Through a narrow window: Sample size and the 

perception of correlation. Journal of Experimental Psychology: General, 126(3), 278-287. 

Kersten, A. W., & Earles, J. L. (2001). Less really is more for adults learning a miniature artificial 

language. Journal of Memory and Language, 44, 250-273. 

Lenneberg, E. H. (1967). Biological foundations of language. New York: Wiley. 

Li, P., Farkas, I., & MacWhinney, B. (2004). Early lexical development in a self-organizing neural 

network. Neural Networks, 17(8-9), 1345-62. 

Li, P., Zhao, X., & Mac Whinney, B. (2007). Dynamic self-organization and early lexical development 

in children. Cognitive Science, 31(4), 581-612. 



40 

 

Long, M. (1990). Maturational constraints on language development. Studies in Second Language 

Acquisition, 12(3), 251-285. 

Long, M. (2005). Problems with supposed counter-evidence to the Critical Period Hypothesis. IRAL, 

43(4), 287-316. 

Lyster, R. (2006). Predictability in French gender attribution: A corpus analysis. Journal of French 

Language Studies, 16, 69-92. 

MacWhinney, B. (2006). Emergent fossilization. In Z. Han & T. Odlin (Eds.), Studies of fossilization in 

second language acquisition (pp. 134-156). Clevedon, UK: Multilingual Matters. 

MacWhinney, B., Leinbach, J., Taraban, R., & McDonald, J. (1989). Language learning: Cues or rules? 

Journal of Memory and Language, 28, 255-277. 

Matthews, C. A. (1999). Connectionism and French gender attribution: Sokolik and Smith re-visited. 

Second Language Research, 15, 412-427. 

Mayberry, R. I. (1993). First-language acquisition after childhood differs from second-language 

acquisition: The case of American Sign Language. Journal of Speech and Hearing Research, 

36, 51-68. 

Mayberry, R. I., & Lock, E. (2003). Age constraints on first versus second language acquisition: 

Evidence for linguistic plasticity and epigenesis. Brain and Language, 87, 369-383. 

Mayberry, R. I., Lock, E., & Kazmi, H. (2002). Linguistic ability and early language exposure. Nature, 

417, 38. 

Metsala, J.L. (1999). Young children’s phonological awareness and non- word repetition as a function 

of vocabulary development. Journal of Educational Psychology, 91, 3–19 

Miller, G.A. (1956). The magical number seven, plus or minus two: some limits on our capacity for 

processing information. Psychological Review, 63, 81-97. 



41 

 

Monner, D., & Reggia, J. A. (2011). A generalized LSTM-like training algorithm for second-order 

recurrent neural networks. Neural Networks (in press). 

Morford, J. P., & Carlson, M. L. (2011). Sign perception and recognition in non-native signers of ASL. 

Language Learning and Development, 7, 149-168. 

Munakata, Y. (2004). Computational cognitive neuroscience of early memory development. 

Developmental Review, 24, 133-153. 

New, B. (2006). Lexique 3 : Une nouvelle base de données lexicales. Actes de la Conférence 

Traitement Automatique des Langues Naturelles (TALN 2006), Louvain, Belgique. 

Newport, E. (1988). Constraints on learning and their role in language acquisition: Studies of the 

acquisition of American Sign Language. Language Sciences, 10, 147-172. 

Newport, E. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 11-28. 

OʼReilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of 

learning in the prefrontal cortex and nasal ganglia. Neural Computation, 18(2), 283-328.  

Paradis, M. (2009). Declarative and procedural determinants of second languages. Amsterdam: 

Benjamins. 

Petanjek, Z., Judaš, M., Kostović, I., & Uylings, H. B. (2008). Lifespan alterations of basal dendritic 

trees of pyramidal neurons in the human prefrontal cortex: A layer-specific pattern. Cerebral 

Cortex, 18, 915-929. 

Pulvermüller, F., & Schumann, J. H. (1994). Neurobiological mechanisms of language acquisition. 

Language Learning, 44(4), 681-734. 

Rohde, D. L. T., & Plaut, D. C. (1999). Language acquisition in the absence of explicit negative 

evidence: how important is starting small? Cognition, 72, 67-109. 

Sabourin, L., Stowe, L., & de Haan, G. (2006). Transfer effects in learning a second language 



42 

 

grammatical gender system. Second Language Research, 22, 1–29. 

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the 

International Conference on New Methods in Language Processing, 12, 44-49. 

Seidenberg, M. S. & Zevin, J. D. (2006) Connectionist Models in Developmental Cognitive 

Neuroscience: Critical Periods and the Paradox of Success. In Y. Munakata & M. Johnson 

(Eds.), Attention & Performance XXI: Processes of Change in Brain and Cognitive 

Development. Oxford University Press. 585-612. 

Sokolik, M. E., & Smith, M. E. (1992). Assignment of gender to French nouns in primary and 

secondary language: A connectionist model. Second Language Research, 8, 39-58. 

Surridge, M. E. (1989). Le facteur sémantique dans l’attribution du genre aux inanimés en français. 

Canadian Journal of Linguistics/Revue Canadienne de Linguistique, 34, 19-44. 

Surridge, M. E. (1993). Gender assignment in French: The hierarchy of rules and the chronology of 

acquisition. IRAL, 31, 77-95. 

Surridge, M. E. (1995). Le ou la? The gender of French nouns. Philadelphia: Multilingual Matters Ltd. 

Teschner, R. V., & Russell, W. M. (1984). The gender patterns of Spanish nouns: An inverse 

dictionary-based analysis. Hispanic Linguistics, 1, 115-132. 

Thomas, M. S. C. & Johnson, M. H. (2008). New advances in understanding sensitive periods in brain 

development. Current Directions in Psychological Science, 17(1), 1-5. 

Thomas, M. S. C. (2009). Competition as a mechanism for producing sensitive periods in connectionist 

models of development. In J. Mayor, N. Ruh & K. Plunkett (Eds.), Progress in Neural 

Processing 18: Proceedings of the Eleventh Neural Computation and Psychology Workshop. 

Singapore: World Scientific. 

Trofimovich, P., & Baker, W. (2006). Learning second language suprasegmentals: Effect of L2 



43 

 

experience on prosody and fluency characteristics of L2 speech. Studies in Second Language 

Acquisition, 28(1), 1-30. 

Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. 

Cognition, 92, 231-270. 

Uylings, H. B. M. (2006). Development of the Human Cortex and the Concept of “Critical” or 

“Sensitive” Periods. Language Learning, 56, 59-90. 

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual 

differences in controlling access to working memory. Nature, 438, 500–503. 

Wikipedia: The free encyclopedia. (2011). FL: Wikimedia Foundation, Inc. Retrieved January 2011, 

from http://www.wikipedia.org 

Wilson, M., & Emmorey, K. (1997). A visuospatial "phonological loop" in working memory: Evidence 

from American Sign Language. Memory and Cognition, 25, 313-320. 

Xie, X., & Seung, H. S. (2003). Equivalence of backpropagation and contrastive Hebbian learning in a 

layered network. Neural Computation, 15(2), 441-54. 

Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. 

International Journal of Bilingual Education and Bilingualism, 13, 505-524. 



1 

 

S.1  Critical Periods in Sign Languages 

Deaf signers form a highly heterogeneous group, where backgrounds differ based on age of 

hearing loss, degree of hearing loss, age of exposure to signing, and type of schooling (oral versus 

signing-focused education), among others. For some, sign language is an L2 (with spoken language as 

L1), while others who are born deaf or become deaf in early infancy have sign language as their first 

language since spoken languages have never been accessible.  

Because the vast majority of this group are born to hearing parents (Mitchell & Karchmer, 

2004), the age of exposure to signing varies greatly, making it possible to compare late L2 acquisition 

with or without exposure to an early L1. That is, studies have examined deaf adults who had exposure 

to American Sign Language (ASL) only in late childhood, comparing those with early childhood 

exposure to English as an L1 to others with no prior L1 exposure. These studies have found higher 

levels of ASL attainment in the former group, that is, among those who had early language exposure 

(Mayberry, 1993; Mayberry & Lock, 2003). In other words, when age of acquisition and amount of 

ASL experience were matched, it was the group with more prior language exposure that had higher 

performance. Within the group for whom ASL is the L1, numerous other studies have also found 

significant differences in ASL performance among those who had early or late exposure (Newport, 

1990; Emmorey, Bellugi, Friederici & Horn, 1995; Mayberry & Eichen, 1991). This body of work 

highlights critical period effects in language acquisition and the importance of early language exposure 

- whether spoken or signed - for full language development, but the neurocognitive underpinnings 

behind these results remain poorly understood. The evidence that language exposure early in 

development is important to later L2 language attainment suggests to us that L1 entrenchment is 

unlikely to be the sole cause of L2 performance deficits. 

S.2  Acquisition of Grammatical Gender 
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In order to become proficient users of a language, learners must be able to identify and acquire 

the different components of the particular linguistic system.  These components include sounds, 

grammatical morphemes, and semantic associations of the language. In the case of languages like 

Spanish and French, it also includes grammatical gender. Researchers across a variety of language-

related fields have explored how the acquisition of this linguistic component develops in different types 

of learners (i.e., monolinguals, bilinguals, and L2 learners), and have reported specific differences and 

similarities across these groups. 

Studies with monolingual adults have suggested that in languages where gender is marked, 

speakers display facilitatory effects during word processing by relying on gender cues. In studies with 

languages like Italian (Bates, Devescovi, Hernandez, & Pizzamiglio, 1996), Spanish (Wicha, Moreno, 

& Kutas, 2004; Lew-Williams & Fernald, 2010), French (Grosjean, Dommergues, Cornu, Guillelmon, 

& Besson, 1994; Dahan, Swingley, Tanenhaus, & Magnuson, 2000), and German (Friederici & 

Jacobsen, 1999) adults were consistently quicker to respond to nouns that were preceded by valid 

grammatical gender cues, than they were to nouns that lacked this additional information. Beyond 

relying on gender cues to process and identify words, adult native speakers also display high accuracy 

during gender assignment tasks. In French, accuracy in gender assignment of nouns has been reported 

to be 96% for regular nouns, and 91% for irregular ones. Furthermore, it is believed that native 

speakers are able to use their previous knowledge of word-endings to make decisions about the gender 

of new words that they encounter. In this same study, when presented with nonce French nouns, native 

speakers were slower to assign a gender, but were able to do so with 80% accuracy  (Holmes & Dejean 

de la Bâtie, 1999). Studies with adults have relied on diverse methodologies, including behavioral (i.e., 

metalinguistic judgments, response time to stimuli, and eye-tracking) and physiological (i.e., event-

related brain potentials) measures. The similarity in the data across methodologies has been used to 
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support the idea that L1 speakers make use of grammatical gender in real time, to form expectations 

about agreement, assignment and violations associated with gender marking. 

When it comes to how young children (who are less experienced with the language) achieve the 

patterns reported with monolingual adults, most developmental evidence comes from research 

investigating the acquisition of function words (determiners in particular). While they are not among 

the first words that children produce (Brown, 1973), function words are heard frequently in the input 

that children receive, and are successfully differentiated from content words even by newborns, based 

on acoustical differences (Shi, Morgan, & Allopenna, 1998; Shi, Werker, & Morgan, 1999). Given the 

position in which determiners occur (usually at the 'edges' of utterances and preceding content words), 

they are thought to aid children during word segmentation, making the identification of word 

boundaries easier (Seidl & Johnson, 2006; Shi, Werker, & Cutler, 2006). A study with Dutch children 

showed that during the first year of life infants rely on determiners for speech comprehension, but do 

not yet display knowledge of gender-marking  (van Heugten & Johnson, 2011). Studies with slightly 

older children show that by 2 to 3 years, children begin to make use of gender cues included in 

determiners when interpreting noun phrases during referent identification tasks in Spanish and French 

(Lew-Williams & Fernald, 2007; van Heugten & Shi, 2009). 

Some interesting developmental patterns have been reported with monolingual children using 

other linguistic tasks, such as gender assignment. Karmiloff-Smith (1979) presented French children 

between 3 and 11 years with nonce French words that had either typically feminine, typically 

masculine, or ambiguous endings, and that were embedded in sentences. Children’s performance 

during the gender assignment task revealed that younger children (3-6 year-olds) relied on noun 

endings, while the older group (6-11 year-olds) assigned gender based on the syntactic cues that were 

provided by the determiners. Interestingly, another study with 7- to 17-year-olds revealed that (like the 
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younger infants and the adults) children relied on the distributional patterns of word-endings when 

assigning gender to unfamiliar French nouns (Tucker, Lambert, & Rigault, 1977). Young learners of 

languages that contain grammatical gender therefore benefit from distributional gender-marking 

patterns, resulting in high gender agreement accuracy (Karmiloff-Smith, 1979; Scherag, Demuth, 

Rösler, Neville, & Röder, 2004). 

Beyond monolinguals, it is also important to consider the time-course of gender acquisition in 

L2 learners of a language. Studies with adult L2 learners of languages like French (Guillelmon & 

Grosjean, 2001), Spanish (Lew-Williams & Frenald, 2010) and German (Scherag et al., 2004) have 

shown that non-native adults are slower than L1 speakers at processing nouns, and do not seem to 

benefit from patterns in gender agreement that are present in the language.  Even childhood learners 

who begin acquiring French in an immersion program at age six do not achieve native-like gender 

agreement (Lapkin & Swain, 1977; Harley, 1979), indicating that acquisition of this grammatical 

component is subject to early age effects. Differences in gender processing between L1 and L2 learners 

have also been reported at the neural level. Hahne (2001) found differences in event-related brain 

potentials when L1 and L2 learners were presented with violations in gender agreement. The brain 

responses of L2 learners had longer latencies compared to those of the native speakers, suggesting that 

perhaps the degree of automaticity with which learners process gender cues in their L2 is different from 

that of L1 speakers.  

Delays in processing gender information, as well as decreased accuracy can be associated both 

with transfer effects from the L1, and with the proficiency level of the L2. Sabourin, Stowe, and de 

Haan (2011) examined the performance of L2 speakers of Dutch whose L1 was either English, 

German, or a Romance language (Spanish, French, or Italian) on gender assignment and gender 

agreement tasks. On average, all language groups were able to correctly assign gender to Dutch nouns 
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more than 80% of the time. However, having a very similar gender system in the L1 was correlated 

with higher accuracy. In the case of gender agreement between the Dutch noun and the relative 

pronoun, there was a distinct hierarchy in the performance of the different linguistic groups. Native 

speakers of English performed at chance, while L1 speakers of German had the highest accuracy (even 

though it was still significantly below native speakers). Native speakers of a Romance language 

performed well above chance, but worse than the German group. These findings suggest that there 

seems to be a strong influence of morphological similarities of gender marking from the L1 to the L2.  

Less is known about the acquisition of grammatical gender in individuals who acquire two languages 

simultaneously. Data from studies with early bilinguals suggest that they show similar patterns to the 

ones found in L1 learners, and equally benefit from prenominal gender information during language-

related tasks (Lew-Williams & Fernald, 2010). Studies with English-French bilinguals (Guillelmon, & 

Grosjean, 2001) and with Spanish-English bilinguals (Montrul, Foote, & Perpiñán, 2008) suggest that 

individuals who acquire two languages early in childhood are sensitive to gender markings in the same 

way that speakers of a single language are. However, contradictory results have also been reported 

suggesting that while early bilinguals resemble monolinguals in measures of pronunciation and 

phonology, they are more like L2 learners in tasks associated with morphosyntax, such as gender 

agreement (Au, Knightly, Jun, & Oh, 2002). These discrepant findings can perhaps be attributed to the 

large amount of variability when it comes to the linguistic history of bilinguals. The age of acquisition, 

the degree of cognitive development, the linguistic environment, and the type of input, among other 

factors, are thought to influence the linguistic outcome of bilingual speakers and how they make use of 

grammatical information. It is therefore necessary to rely on methodologies that do not focus on 

naturalistic occurrences of language acquisition, in order to gain further knowledge on this topic.  

S.3  Neural Networks 
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In our study, we use a neural network model to approximate a learner of natural languages. A 

neural network generally consists of a large collection of simple processing elements, which we will 

refer to as units. Units are drastic simplifications of biological neurons that are primarily characterized 

by their scalar ACTIVATION LEVEL, represented as a number between 0 (inactive; not firing at all) and 1 

(maximally active; firing as quickly as possible). A unit’s activation level is determined by aggregating 

contributions of many incoming connections from other units. Each such connection has a numerical 

WEIGHT representing the strength of the connection. To determine its activation at a given time, a unit 

first evaluates all of its incoming connections from other units, calculating the sum of each connection 

weight times the activation level of the unit on the other end of the connection. It then passes this sum 

through a nonlinear function to obtain its activation value, with strongly negative sums producing 

values closer to 0 and strongly positive sums producing values closer to 1. The activation level of the 

unit can then play a role in activating every other unit to which it has an outbound connection. This 

results in a dynamical system where small changes in activation or connection weighting can have 

profound effects, especially over time. 

Units are organized into groups called LAYERS, with networks being described in terms of the 

connectivity between all units in pairs of layers (see Figure S.1). Most networks possess an INPUT 

LAYER, in which the units have no incoming connections, instead receiving their activation values 

directly from the environment - analogous to how specialized neurons in the cochlea vary their firing 

rates based on acoustic vibrations. Patterns of activation of input layer units can usually be directly 

interpreted; these patterns could represent, for example, specific speech sounds, or a specific visual 

image. Units in the input layer project connections to units in one or more HIDDEN LAYERS, which 

gradually learn to transform and organize the input in ways that may not be obvious to an outside 

observer. In the case of multiple hidden layers, units in one such layer often project connections to 
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units in the next. This chain of connectivity ends at an OUTPUT LAYER, which is generally designed so 

that, like the input layer, the pattern of activations over the units is directly interpretable, and could 

represent, for example, the word formed by the input speech sounds, or a prominent object in the input 

visual image. A neural network can learn to produce desirable outputs for given inputs by slowly 

adjusting the connection weights in the network according to the difference between the observed 

output and the desired output (e.g., Rumelhart, Hinton, & Williams, 1986). After this TRAINING, the 

weights encode all the information necessary for the network to turn an input into a desired output. 

That is, the weights form the network’s equivalent of long-term memory. 

Insert Figure S.1 about here 

Simple neural networks adopt a FEED-FORWARD connectivity architecture in which connections 

proceed in one direction from the inputs to the outputs. This type of network leads to simple one-to-one 

input-to-output mappings because unit activations do not carry over from one time step to the next, and 

thus only depend on the current input. Richer dynamics, however, are possible in a RECURRENT 

architecture - one in which connectivity from later layers feeds back into earlier layers. Recurrence 

causes unit activations to depend on the recent input history in addition to the current input, enabling 

the learning of complex multi-input to multi-output mappings. Since a recurrent network architecture 

allows units to maintain activity over short periods of time, the maintained activation values of units in 

the network underlie its equivalent of short-term or working memory. Implemented this way, working 

memory in a recurrent neural network behaves like human working memory in a few important 

respects. A working memory representation of a particular input will fade naturally with time because 

new inputs tend to disrupt the flow of neural activity that maintains the original memory. As a result of 

this, we can think of a recurrent network as having a limited working memory capacity, though this 

limit, as with humans, is not hard and fast. Unfortunately, for the most commonly used types of 
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recurrent networks (e.g. the SRN, or Simple Recurrent Network; Elman, 1990), disruption due to new 

inputs happens rather quickly, causing the network's working memory capacity to be unacceptably low. 

For this reason, we use the Long Short Term Memory (LSTM; Hochreiter & Schmidhuber, 1997; Gers 

& Cummins, 2000; Gers & Schmidhuber, 2001) architecture, explained in the next section. 

S.4  Long Short Term Memory (LSTM) 

This section introduces the Long Short Term Memory (LSTM) neural architecture by way of 

graphical comparison with both a simple feed-forward network and the popular simple recurrent 

network (SRN) architecture. The top left portion of Figure S.2 depicts the mathematical operations 

performed by a basic neural unit that is stateless, meaning that its current state does not depend directly 

on its previous state. Examining this diagram from bottom to top, we see that such a unit generally 

receives weighted (solid) connections from several other units, sums them, and then passes the result 

(via a dashed ‘copy’ connection) through a nonlinearity such as the logistic function. The resulting 

activation of the unit is passed on via weighted connections to other units in the network. This type of 

stateless unit is the basic building block of a feed-forward neural network. 

Insert Figure S.2 about here 

Continuing to the top middle portion of Figure S.2, we see a depiction of a hidden unit in an 

SRN. We can see that this unit copies its activation back to what is generally called the CONTEXT unit, 

whose only job is to make available the unit’s previous activation. In addition to the weighted sum of 

inputs, the SRN unit also receives weighted inputs from its own context unit, as well as the contexts of 

all other hidden units in the layer. During gradient descent training of an SRN, this setup can cause 

problems for learning long sequences. As error responsibilities are passed backwards in time through 

the unit, they are scaled by the derivative of the unit’s nonlinearity and also by the weight between the 

previous and current unit activations. This repeated scaling tends to obscure the true error 



9 

 

responsibilities, generally making them useless after only a few time-steps. So while SRNs are quite 

good at learning short sequences of only a few elements, they have difficulty storing and retrieving 

longer ones. 

The basic building block of a hidden layer in LSTM is designed to ameliorate the issues with 

the SRN unit. An LSTM memory cell, as shown in the top right portion of Figure S.2, contrasts with 

the SRN unit in several ways. First, the memory cell copies back not the output of the nonlinearity, but 

the input to it. This previous state of the memory cell is then added directly to whatever input the cell 

receives during the current time-step. The previous state is not transformed by a weight as in an SRN 

hidden unit, and is only applied to the cell in question instead of all other units as in SRN. For a 

memory cell, then, gradient descent does not demand repeated scaling due to the nonlinearity or due to 

the weight. The upshot of this is vastly improved tracking of error responsibilities over time, resulting 

in an ability to successfully learn much longer input sequences. 

 The sequence-learning abilities of an LSTM memory cell can be augmented further if it is 

accompanied by as many as three multiplicative gate units that control the flow of information in 

different parts of the cell. These gates, trained by gradient descent just like the memory cell itself, learn 

to optimally manage inflow, outflow, and retention of activity in the memory cell. Each gate is a simple 

stateless neural unit with its own set of input weights, generally from the same cells that project to the 

memory cell itself.  

The first type of gate is called an INPUT GATE and can be seen added to the base memory cell in 

the bottom left portion of Figure S.2. As indicated by the unit labeled pi, the activation of the input gate 

multiplies the weighted input to the memory cell. Since the gate’s range of possible activations is 

between 0 and 1, the gate is able to effectively let all, some, or none of the memory cell’s input through 

to actually effect change in the cell. This is useful if the memory cell is currently holding some useful 
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bit of information that should not be disrupted by new input.  

Another type of gate, called a FORGET GATE and depicted in the bottom middle of Figure S.2, 

controls how much information the memory cell retains between each step by inserting itself between 

the copied previous state of the memory cell and the current state. The forget gate’s purpose is to allow 

the memory cell to forget its current state if the information represented therein has outlived its 

usefulness.  

The final gate type, shown at the bottom right of Figure S.2, is called an OUTPUT GATE and 

controls how much of the final activation of the memory cell is visible to downstream units. It 

accomplishes this by inserting itself after the nonlinearity but before the outgoing weighted 

connections. This gate can prevent the memory cell from perturbing other units in the network in cases 

where the information the cell contains is not yet ready to be used. 

For a comprehensive explanation of LSTM, including explicit formulae for the network’s 

activation and learning rules and a derivation of its gradient-descent learning procedure LSTM-g, 

please consult Monner & Reggia (2011). 

References 

Au, T., Knightly, L., Jun, S., & Oh, J. (2002). Overhearing a language during childhood. Psychological 

Science, 13, 238–243. 

Bates, E., Devescovi, A., Hernandez, A., & Pizzamiglio, L. (1996). Gender priming in Italian. 

Perception & Psychophysics, 58, 992–1004. 

Brown, R. (1973). A first language. Cambridge, MA: Harvard University Press. 

Dahan, D., Swingley, D., Tanenhaus, M.K., & Magnuson, J.S. (2000). Linguistic gender and spoken-

word recognition in French. Journal of Memory and Language, 42, 465–480. 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211. 



11 

 

Emmorey, K., Bellugi, U., Friederici, A., & Horn, P. (1995). Effects of age of acquisition on 

grammatical sensitivity: Evidence from on-line and off-line tasks. Applied Psycholinguistics, 

16, 1-23. 

Friederici, A.D., & Jacobsen, T. (1999). Processing grammatical gender during language 

comprehension. Journal of Psycholinguistic Research, 28, 467–484. 

Grosjean, F., Dommergues, J.Y., Cornu, E., Guillelmon, D., & Besson, C. (1994). The gender-marking 

effect in spoken word recognition. Perception & Psychophysics, 56, 590–598. 

Guillelmon, D., & Grosjean, F. (2001). The gender marking effect in spoken word recognition: The 

case of bilinguals. Memory & Cognition, 29, 503–511. 

Hahne, A. (2001). What’s different in second-language processing? Evidence from event related brain 

potentials. Journal of Psycholinguistic Research, 30, 251–266. 

Holmes, V., & Dejean de la Bâtie, B. (1999). Assignment of grammatical gender by native speakers 

and foreign learners of French. Applied Psycholinguistics, 20, 479–506. 

Karmiloff-Smith, A. (1979). Language as a formal problem space for children. Paper prepared for 

Beyond description in child language. Nijmegen, Holland. 

Lapkin, S. & Swain, M. (1977). The use of English and French cloze tests in a bilingual education 

program evaluation: validity and error analysis. Language Learning, 27, 279-314. 

Lew-Williams, C., & Fernald, A. (2007). Young children learning Spanish make rapid use of 

grammatical gender in spoken word recognition. Psychological Science, 18, 193-198. 

Lew-Williams, C., & Fernald, A. (2010). Real-time processing of gender-marked articles by native and 

non-native Spanish speakers. Journal of Memory and Language, 63, 447-464. 

Mayberry, R. I. (1993). First-language acquisition after childhood differs from second-language 

acquisition: The case of American Sign Language. Journal of Speech and Hearing Research, 



12 

 

36, 51-68. 

Mayberry, R. I., & Eichen, E. (1991). The long-lasting advantage of learning sign language in 

childhood: Another look at the critical period for language acquisition. Journal of Memory and 

Language, 30, 486-512. 

Mayberry, R. I., & Lock, E. (2003). Age constraints on first versus second language acquisition: 

Evidence for linguistic plasticity and epigenesis. Brain and Language, 87, 369-383. 

Mitchell, R.E. and Karchmer, M.A. (2002) Chasing the mythical ten percent: parental hearing status of 

deaf and hard of hearing students in the United States. Sign Language Studies, 4, 128–163 

Montrul, S., Foote, R., & Perpiñán, S. (2008). Gender agreement in adult second language learners and 

Spanish heritage speakers: The effect of age and context of acquisition. Language Learning, 58, 

503-553. 

Newport, E. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 11-28. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. (E. Rosenfeld & J. A. Anderson, Eds.) Nature, 323(9), 533-536. 

Sabourin, L., Stowe, L., & de Haan, G. (2006). Transfer effects in learning a second language 

grammatical gender system. Second Language Research, 22, 1–29. 

Scherag, A., Demuth, L., Rösler, F., Neville, H. J., & Röder, B. (2004). The effects of late acquisition 

of L2 and the consequences of immigration on L1 for semantic and morphosyntactic language 

aspects. Cognition, 93, B97–B108. 

Seidl, A., & Johnson, E.K. (2006). Infant word segmentation revisited: edge alignment facilitates target 

extraction. Developmental Science, 9, 565–573. 

Shi, R., Morgan, J.L., & Allopenna, P. (1998). Phonological and acoustic bases for earliest 

grammatical category assignment: a cross-linguistic perspective. Journal of Child Language, 



13 

 

25, 169–201. 

Shi, R., Werker, J., & Morgan, J. (1999). Newborn infants’ sensitivity to perceptual cues to lexical and 

grammatical words. Cognition, 72, B11–B21. 

Shi, R., Werker, J.F., & Cutler, A. (2006). Recognition and representation of function words in 

English-learning infants. Infancy, 10, 187–198. 

Tucker, G. R., Lambert, W. E., & Rigault, A. A. (1977). The French speaker’s skill with grammatical 

gender: An example of rule-governed behavior. Paris: Mouton. 

van Heugten, M., & Johnson, E. K. (2011). Gender-marked determiners help Dutch learners’ word 

recognition when gender information itself does not. Journal of Child Language, 38, 87-100. 

van Heugten, M., & Shi, R. (2009). French-learning toddlers use gender information on determiners 

during word recognition. Developmental Science, 12, 419–425. 

Wicha, N.Y.Y., Moreno, E.M., & Kutas, M. (2004). Anticipatory words and their gender: An event-

related brain potential study of semantic integration, gender expectancy, and gender agreement 

in Spanish sentence reading. Journal of Cognitive Neuroscience, 16, 1272–1288. 

 



(a) (b)



......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Unit 

Growth

Unit 

Replacement

Connection 

Growth

Initial State Final State... Intermediate States ....Time →



Input / Auditory Phoneme Features (19)

Output II / Auditory Phoneme Features (19)

Memory Cells I (30)

Memory Cells II (30)

Output I / Auditory Phoneme Features (19)

Input Layer / Auditory Phoneme Features (19)

Output Layer / Determiners (9)

Memory Cells (30)

Assignment Network Agreement Network



Condition

F
in

al
 P

er
fo

rm
an

ce
 (

fr
ac

ti
on

 c
or

re
ct

)

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.9

French Assignment

●

●

1 2 3 4

Spanish Assignment

●

●

● ●
●● ●●

1 2 3 4

French Agreement

●●
●

●

●

1 2 3 4

Spanish Agreement

●
●

●

●

●
●

●

●

●

1 2 3 4

F
ren

ch
 M

on
olin

gu
al

S
p
an

ish
 M

on
olin

gu
al

Condition

1: No Growth

2: Connection Growth

3: Unit Growth

4: Unit Replacement



L1-Only Training Time (t , in thousands of trials)

F
in

al
 P

er
fo

rm
an

ce
 (

fr
ac

ti
on

 c
or

re
ct

)

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

French Assignment

0 150 300 500 700 900

Spanish Assignment

0 150 300 500 700 900

French Agreement

0 150 300 500 700 900

Spanish Agreement

0 150 300 500 700 900

F
ren

ch
 N

ative
S
p
an

ish
 N

ative

Condition

No Growth

Connection Growth

Unit Growth

Unit Replacement



Input Layer

Output Layer

Hidden Layer II

Hidden Layer I

Feed-forward Neural Network

Input Layer

Output Layer

Hidden Layer II

Hidden Layer I

Recurrent Neural Network



Stateless Unit SRN Hidden Unit LSTM Memory Cell

Adding Input Gates Adding Forget Gates Adding Output Gates



Figure 1: (a) Scores of participants on an English grammaticality judgment test plotted against age of 

acquisition (reproduced from DeKeyser, Alfi-Shabtay, & Ravid, 2010). (b) Several measures of 

working memory capacity plotted against the age of the participant (reproduced from Gathercole, 

1999). 

 

Figure 2: Depiction of the various network development conditions, from least developed state on the 

left to most developed state on the right. The top row shows the unit growth condition, initially with 

few units in the shaded hidden layer; the network recruits new units via new connections (dashed) as 

time passes. The middle row shows the unit replacement condition, which starts with a full complement 

of units that are periodically removed and replaced with fresh units and untrained connections. The 

bottom row depicts the connection growth condition, which begins with a full complement of hidden 

layer units, though they are sparsely connected to the other units; as time passes, these units develop 

new connections until they reach a fully connected state. 

 

Figure 3: On the left is shown the architecture of networks used in the gender assignment task. The 

assignment network takes features of auditory phonemes as input, passes them through a hidden layer 

of self-recurrent memory cells, and maps a sequence of such inputs onto an output layer of units 

representing determiners in two languages. Depicted on the right is the architecture of networks used in 

the gender agreement task. The agreement network also takes auditory phoneme features as input, but 

passes them through a series of two hidden layers of memory cells. After processing each input 

phoneme, the network uses its two output layers to predict the next two phonemes that it will be given 

as input. Though no recurrent connections are depicted at this level for either network, each individual 

memory cell is self-recurrent, remembering its activation from the previous step. 

 

Figure 4: Results for monolingual networks, of all four developmental varieties, on the gender 

assignment and agreement tasks. We trained 30 separate networks in each developmental condition for 

each language. Each network was trained for 2 million trials in one language, and then evaluated on 

both languages. 

 

Figure 5: Results for bilingual networks on the gender assignment and agreement tasks. Each network 

was assigned an L1 and trained initially on only that language before the other language was 

introduced. The x-axis varies the time t each network spent with L1 in isolation before L2 was 

introduced. Note that t = 0 corresponds to a native bilingual network for which neither language is ever 

prioritized, while larger values of t correspond to increased time spent with L1 alone, and thus 

presumably increased levels of L1 entrenchment. The y-axis shows the final performance on the 

language task after training was complete. We trained 30 separate networks in each combination of 

developmental condition, native language, and t-value (shown as ticks on x-axis). The networks were 

trained for t trials of L1 alone before a period of 2 million trials of L1 and L2 in equal proportion. The 

lines depicted for each combination of development condition and task are smoothed-average curves 

shown over the sampled values of t, which are indicated by the vertical lines in each pane. 

 

Figure S1: Two example depictions of neural network models. Boxes represent layers (collections of 

units) and arrows represent connectivity between layers which is often all-to-all for each pair of units in 

connected layers. At left, a feed-forward network with two hidden layers, each layer feeding in to the 

next en route to the output layer. At right, a similar recurrent network. The feedback connections allow 

unit activations to persist with time, giving the network a working memory and enabling it to process 

sequences of inputs and outputs instead of static input/output pairs. 

 

Figure S2: Top left: a graphical depiction of the mathematical operation of a stateless neural unit. Top 



middle: a hidden unit from an SRN. Top right: an LSTM memory cell. Bottom row: Depictions of 

adding accompanying gate units to a memory cell. 



Table 1 (next page):  

Binary feature representations of phonemes 
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h - + + - - - - - - - - - - + + - + - - 

ᶨ - + + - - - - + - - - - - + + - - - - 

ɛ - + + - - - - + - - - - - + - - - + - 

e - + + - - - - + - - - - - + - - - + + 

ә - + + - - - - + - - - - - + - - + - - 

a - + + - - - - + - - - - - + - + + + - 

i - + + - - - - + - - - - - + + - - + + 

ɔ - + + - - - - + + + - - - + - - + + - 

o - + + - - - - + + + - - - + - - + + + 

y - + + - - - - + + + - - - + + - - + + 

u - + + - - - - + + + - - - + + - + + + 

œ - + + - - - - + + + - - - + - - - + - 

ø - + + - - - - + + + - - - + - - - + + 

ɛ̃ - + + - + - - + - - - - - + - - - + - 

ã - + + - + - - + - - - - - + - + + + - 

ɔ̃ - + + - + - - + + + - - - + - - + + - 

æ ̃ - + + - + - - + + + - - - + - - - + - 

k + - - - - - - - - - - - - + + - + - - 

t + - - - - - - - - - + + - - - - - - - 

p + - - - - - - - + - - - - - - - - - - 

g + - - - - - - + - - - - - + + - + - - 

d + - - - - - - + - - + + - - - - - - - 

b + - - - - - - + + - - - - - - - - - - 

Ɣ + - + - - - - + - - - - - + + - + - - 

ð + - + - - - - + - - + + - - - - - - - 

θ + - + - - - - - - - + + - - - - - - - 

β + - + - - - - + + - - - - - - - - - - 

ʃ + - + + - - - - - - + - + - - - - - - 

s + - + + - - - - - - + + - - - - - - - 

f + - + + - - - - + - - - - - - - - - - 

ʁ + - + + - - - + - - - - - + - - + - - 

ʒ + - + + - - - + - - + - + - - - - - - 

z + - + + - - - + - - + + - - - - - - - 

v + - + + - - - + + - - - - - - - - - - 

ʎ + + - - - + - + - - - - - + + - - - - 

l + + - - - + - + - - + + - - - - - - - 

ɲ + + - - + - - + - - - - - + + - - - - 

ƞ + + - - + - - + - - - - - + + - + - - 

n + + - - + - - + - - + + - - - - - - - 

m + + - - + - - + + - - - - - - - - - - 

j + + + - - - - + - - - - - + + - - - - 

ɾ + + + - - - - + - - + + - - - - - - - 

w + + + - - - - + + - - - - + + - + - - 

r + + + - - - + + - - + + - - - - - - - 



Table 2: 

Significance and magnitude of performance change as t increases 
 

 

 

 

Task Language Development Slope Signif Mag 

No Growth Increasing *** * 

Connection Growth Increasing *** * 

Unit Growth Increasing *** * 
French Native 

Unit Replacement Increasing *** * 

No Growth Decreasing *** ** 

Connection Growth Flat   

Unit Growth Increasing *** * 

French Assignment 

Spanish Native 

Unit Replacement Decreasing *** ** 

No Growth Flat   

Connection Growth Flat   

Unit Growth Increasing *** * 
French Native 

Unit Replacement Flat   

No Growth Flat   

Connection Growth Flat   

Unit Growth Increasing *** * 

Spanish Assignment 

Spanish Native 

Unit Replacement Flat   

No Growth Flat   

Connection Growth Flat   

Unit Growth Flat   
French Native 

Unit Replacement Flat   

No Growth Decreasing *** ** 

Connection Growth Decreasing *** *** 

Unit Growth Flat   

French Agreement 

Spanish Native 

Unit Replacement Decreasing *** ** 

No Growth Decreasing *** ***** 

Connection Growth Decreasing *** **** 

Unit Growth Flat   
French Native 

Unit Replacement Decreasing *** ***** 

No Growth Flat   

Connection Growth Flat   

Unit Growth Flat   

Spanish Agreement 

Spanish Native 

Unit Replacement Increasing * ** 

Significance: *** for p < 0.001, ** for p < 0.01, * for p < 0.05 

Magnitude: ***** for m > 12%, **** for m > 9%, *** for m > 6%, ** for m > 3%, * for m > 1% 



Table 3:  

Determiners used by the gender agreement model 

 

French Spanish 

a, le, l', un, une, ce, cette, cet, aucun, aucune, 

chaque, tel, telle, sa, son, ma, mon, ta, ton, 

notre, votre, leur 

el, la, un, una, este, esta, ese, esa, aquel, 

aquella, ningún, ninguno, ninguna, cualquier, 

cualquiera, cada, su, tu, mi, nuestra, nuestro, 

vuestra, vuestro 

 


