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Abstract

Two related and integral parts of linguistic competence are the ability to
comprehend incoming utterances and the ability to respond to them appro-
priately. In this context, we present two biologically inspired recurrent neural
network models, based on the long short-term memory (LSTM) architecture,
each of which develops a functional grasp of a small language by participating in
a question-answering game. Both models receive questions in English, presented
as temporal streams of speech sound patterns. As a further input, the models
receive a set of symbolic facts about a simulated visual environment. The mod-
els learn to correctly answer input questions by observing question-answer pairs
produced by other participants. The first of our two models produces its answers
as symbolic facts, demonstrating an ability to ground language. The second
model learns by observation to produce its answers as full English sentences.
This latter task in particular is closely analogous to that faced by human lan-
guage learners, involving segmentation of morphemes, words, and phrases from
observable auditory input, mapping of speech signals onto intended environmen-
tal referents, comprehension of questions, and content-addressed search capabil-
ities for discovering the answers to these questions. Analysis of the models shows
that their performance depends upon highly systematic learned representations
that combine the best properties of distributed and symbolic representations.

Keywords: question answering, language comprehension, speech production,
recurrent neural network, long short term memory

Introduction

In human discourse, it is often the case that the speech acts of the partic-
ipants alternate between requests and responses, with one party seeking infor-
mation and the other providing it, followed by one of the parties expressing
another request, and so on. There is a considerable literature on how one could
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construct a program capable of participating in the request/response paradigm
(e.g., Diederich & Long, 1991; Graesser & Franklin, 1990; Miikkulainen, 1993,
1998; Williams & Miikkulainen, 2006; St. John & McClelland, 1990; Rohde,
2002). One of the most recent and well-known examples of such a question-
answering system is IBM’s Watson (Ferrucci et al., 2010), which can often best
experienced players in the quiz show Jeopardy!. While Watson and systems like
it are undoubtedly impressive, their errors are often baffling and inscrutable to
onlookers, suggesting that the strategies they employ differ greatly from those
that humans use. While question-answering systems have been well-studied in
natural language processing domains, little research has been done on how the
question/answer style of interaction might influence the ways in which humans
acquire language. In human language modeling, much interest has been paid to
the study of language comprehension (the transformation of an auditory signal
into a meaning; see, e.g., Markert et al., 2009) and of language production (the
inverse problem of transforming a meaning into speech sounds; see, e.g., Dell,
1993), or both simultaneously (e.g., Plaut & Kello, 1999; Chang et al., 2006),
but there is little human language modeling research that focuses specifically
on learning to produce appropriate responses to questions. This is an interest-
ing subject in light of the fact that, when listening to language, learners are
constantly confronted with these request/response, question/answer pairs. Par-
ticularly interesting is the question of how the language faculties of a learner in
this situation could be implemented solely by a complex neural network like the
human brain.

Here we investigate the extent to which a biologically inspired neural network
model of a human learner can develop a grasp of a small language by listening
to simple question/answer pairs. The model is situated in a simulated visual
environment along with two other speakers, referred to as Watson and Sher-
lock. Watson asks simple questions about the shared environment in a subset of
English, and Sherlock responds to these questions with the information Watson
seeks. The model’s task is to learn to emulate Sherlock. To do this effectively,
the model must listen to the speech sounds of Watson’s questions and learn to
segment them into morphemes, words, and phrases, and then interpret these
components with respect to the common surroundings, thereby grounding them
in visual experience. The model must then recognize what information Watson
is asking for and provide that information in a form that aligns with an answer
that Sherlock would give.

We examine two related models that differ in how the answers are provided.
The first model learns to provide the answer to a question from Watson as
a raw meaning—a series of predicates describing properties of, and relations
between, objects in the environment. As such, it is called the meaning-answer
model. The answers this model provides are meant to be analogous to the
learner’s internal representations of meaning, though the representational form
the model uses is determined a priori instead of learned. Teaching a model to
answer this way is useful because it demonstrates explicitly that such a model
can ground its answers by referring to concrete objects in the environment,
rather than simply rearranging the question and guessing a plausible answer.
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However, for this to be a reasonable model of human language learning, it would
need to learn entirely based on data that are readily available to any language
learner. Thus, the model would need to have direct access to Sherlock’s internal
meaning representations, which is, of course, not generally possible in human
language learning situations (though there is some evidence that the listener may
often be able to infer meanings from context; see Tomasello, 2003). However,
examining this limited model can still be useful, as its predicate-based outputs
provide direct evidence that neural models can learn to produce a fully grounded
representation of an answer to a question.

A second model addresses this limitation of the meaning-answer model by
providing its answers much like the input questions—as sequences of speech
sounds. This second model is termed the spoken-answer model. The rep-
resentation of an answer in this case is unambiguously observable whenever
Sherlock responds to Watson, placing the spoken-answer model a step closer
to the reality of human language learning. The problem of learning to answer
questions is more difficult in this case, since the network is trained using only
the observable linguistic stimuli produced by Sherlock, which are not only more
verbose than Sherlock’s intended meanings but also potentially lossy transla-
tions thereof. Nonetheless, analysis of this model provides evidence that this
approach to training offers a tractable path to both language comprehension
and production.

Methods

Both the meaning-answer model and the spoken-answer model have the same
general structure, shown in Figure 1. The remainder of this section explores
in detail the tasks performed by the models and the representations for their
input and output signals before comparing and contrasting the neural network
architectures of each.

Tasks

As mentioned in the introduction, the models are faced with the task of
learning to comprehend and produce language in the context of answering ques-
tions. The overview of the task is simple: One of the models is placed in a
shared visual environment with two other speakers, Watson and Sherlock. A
training trial begins with Watson asking a question, the answer to which is
directly observable in the environment. Sherlock surveys his surroundings and
gives the answer, which the model observes and attempts to mimic. A testing
trial, in contrast, is one in which Watson asks a similar question, but Sherlock
is silent, relying on the model to produce the desired answer.

During a trial, the model first takes stock of the environment, receiving a
stream of visual input and compressing it into a sort of visual gestalt represen-
tation for later reference. It then listens for Watson’s question as a temporal
sequence of speech sounds (phonemes), processing these into an auditory gestalt
of sorts. After hearing the totality of the question, the model attempts to com-
bine the visual and auditory gestalts, internally mapping the references in the
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Figure 1: Information flow in the models. A model receives Watson’s question as a sequence
of phonemes in time, and information about the environment as a set of predicates, also
presented temporally but in random order. The meaning-answer model would then attempt
to produce an answer to the question as a set of predicates, while the spoken-answer model
would answer in the form of a speech stream.
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sentence to objects in the environment and subsequently figuring out what it is
that Watson wants to know.

If the model in question is the meaning-answer model, it then provides the
answer in the form of a sequence of grounded predicates that could serve as the
meaning for a complete-sentence answer to Watson’s question. The meaning-
answer model must learn this behavior by imitating Sherlock, who always knows
the answers to Watson’s questions. In real human language learning, Sherlock’s
raw meaning would not necessarily be available for the model to imitate. The
motivation for the meaning-answer model is to transparently demonstrate that
a neural network model is capable of learning to produce this type of precise
answer by grounding its auditory input in the visual scene.

In contrast to the meaning-answer model, the spoken-answer model answers
questions by generating sequences of speech sounds (phonemes) that form a
complete English sentence. The model again learns to produce these sounds
by imitating Sherlock, and since these sounds are observable, this addresses
the concern with the meaning-answer model and positions the spoken-answer
model much closer to the reality of a human language learner. Because the
model’s internal meaning representations are learned, they are also much harder
to interpret than the meaning-answer model’s hand-designed predicates, and as
such, it is more difficult to demonstrate robust grounding in the spoken-answer
model than in the meaning-answer model. However, the spoken-answer model
makes a different point: Mimicking observed speech, which is generally a lossy
translation of the internal meaning of the speaker, is sufficient to learn question-
answering behavior.

The following subsections examine in detail the ways in which the auditory
inputs, visual inputs, and both predicate- and speech-based model outputs are
constructed, and also describe the vocabularies and grammars to which Watson
and Sherlock restrict themselves.

Environment input

The visual environment shared by the three participants consists of a number
of objects placed in relation to each other; an example environment configuration
is depicted in Figure 2. Each object has values for the three attributes (Size,
Shape, and Color), and each attribute has three possible values: small, medium,
and large for Size; block, cylinder, and pyramid for Shape; and red, green,
and blue for Color. Thus, 27 distinct objects are possible. In addition, each
object has a label that identifies it uniquely in the environment, which is a useful
handle for a specific object and is necessary in the event that the participants
need to distinguish between two otherwise identical objects.

Each object is represented as three predicates, each of which binds an at-
tribute value to a unique object label. We use integers as the labels in the text,
though the labels are arbitrary and the objects they represent are not ordered in
any way. For example, a small red block with label 2 is completely described by
the predicates (Size small 2), (Color red 2), and (Shape block 2), which
are presented to the models in a temporal sequence. An environment consists
of two to four randomly generated objects, and the predicates describing all of
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(Color blue 1)
(Size large 1)
(Shape block 1)
(Location under 1 4)
(Location near 1 3)

(Color green 4)
(Size medium 4)
(Shape pyramid 4)
(Location on 4 1)

(Color green 3)
(Size medium 3)
(Shape cylinder 3)
(Location under 3 2)
(Location near 3 1)

(Color red 2)
(Size small 2)
(Shape block 2)
(Location on 2 3)

Figure 2: Example visual environment. This simulated environment contains four objects,
along with the complete set of predicates that describe the environment. The predicates are
the environmental input to the model; the visual depiction of the objects here is simply for
reference.

these objects are presented at the visual input layer of the model as a random-
ized temporal sequence at the start of a trial. Each predicate is presented as a
set of input unit activations. Input units are generally inactive, except for single
active units corresponding to the type of attribute (e.g., Color), the value of
that attribute (e.g., blue), and the label (e.g., 3). See Figure 3 for a depiction
of example predicates and their representations in terms of neural activity.

Additional predicates are used to describe spatial relations between the ob-
jects. One object may be near, on, or underneath another. For example, if the
small red block (with label 2) is on top of a medium-sized green cylinder (label
3), that fact would be presented to the model as the predicate (Location on

2 3). In the simulated environment, the on and under relations are comple-
mentary (meaning that (Location on 2 3) implies (Location under 3 2)),
and the near relation is symmetric (such that (Location near 1 3) implies
(Location near 3 1)). The location predicates are presented along with the
attribute predicates and at the same visual input layer.

Though this space of possible environments may seem small at first, the
number of unique environmental configurations is quite large. Using only two,
three, or four objects at a time provides approximately 2.48 × 1010 distinct
possible environment configurations.

The visual representation just described is a drastic simplification of real
visual input that the models adopt for reasons of computational tractability.
At the cost of moving away from sensory-level visual input, the models gain
enough computational efficiency to study the language acquisition phenomenon
of primary interest. This type of high-level visual representation can be viewed
as the equivalent of a representation that might be produced by the later stages
of the human visual system, though probably not in this precise form. Much
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Figure 3: Neural representation of predicates. These two example predicates could be used
as visual input or as meaning output. The left-most group of 4 cells in each case denotes
the predicate type, of which only one cell will be active in a well-formed predicate. Cells in
the middle group of 12 each stand for an attribute value; again, in well-formed predicates,
only one of these is active at a time, and the attribute value will correspond to the correct
predicate type. The right-most cells correspond to unique labels for environmental objects; in
most cases, only a label from the first column is active, binding the active predicate-attribute
pair to that label, as in the first example above representing (Color blue 3). Location pred-
icates, such as the second example (Location on 2 4), activate two label nodes to establish
a relationship between them.
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like hypothesized human visual representations, this scheme requires the models
to bind several types of information together to form a coherent representation
of a seen object. The inclusion of additional predicates describing the spatial
relations between the objects in the environment allows questions and answers
to be conditioned on the locations of objects, so the models can distinguish, for
example, two otherwise identical small red blocks by the fact that one of them
rests on top of a cylinder and the other does not.

Question input

Watson produces complete English sentences that ask questions about the
current shared environment. There are many possible questions for each envi-
ronment; for the example environment in Figure 2, Watson might ask: What
color block is the green pyramid on?, What thing is under the small block?, What
color are the medium things?, or Where is the pyramid?.

At the start of each trial, Watson examines the environment and then be-
gins deriving a question beginning at the Question nonterminal in the mildly
context-sensitive grammar of Figure 4. The derivation is constrained not only
by the grammar itself, but also by the environment. Specifically, any objects
that Watson refers to must be present in the environment and, to a sophisti-
cated observer, unambiguously identified by the full context of the question.
For example, Watson could not ask What color is the block? because it is not
clear which block is being referred to, and thus any answer would be poorly de-
fined. Watson can, however, ask questions about groups of objects that share a
property, such as What color are the medium things? ; in this case, the medium
things are the cylinder and pyramid, which are both green, so the answer is
well defined. Questions posed to the models are required to have well-defined
answers to maintain the simplicity of evaluation and training; after all, if the
answer is ambiguous, how can one tell whether the model produced the correct
answer or not? An important future research task will be to relax this require-
ment and see if one can train a model such that, when it is given an ambiguous
question, it produces either an answer that is plausible, or an answer indicating
its uncertainty.

The words in Watson’s question are phonetically transcribed, and the result-
ing phoneme sequences are appended to produce one uninterrupted temporal
sequence corresponding to the spoken sentence. Word and morpheme bound-
aries are not marked, leaving the model to discover those on its own, just as with
real-world speech signals. When the speech sequence for a question is presented
as input to the model, individual phonemes are given one at a time. Phonemes
are represented using vectors of binary acoustic features based on observable
phonetic features thought to play a role in human language recognition; a full
listing of phonemes and their feature mappings can be found in Table 1.

Answer output

After Watson has finished asking a question, the model attempts a response.
On training trials, Sherlock then gives the correct response, and the model
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Question → where Is Object |What Is Property

Answer → Object Is Property

Object → the [Size] [Color] Shape

What → what color [Size] Shape |
what size [Color] Shape |
what [Size] [Color] thing

Propertya → Location |Color | Size
Locationb → on Object | under Object | near Object

Isc → is | are

Size → small |medium | large

Color → red | blue | green

Shape → things | pyramid[s] | block[s] | cylinder[s]

Figure 4: Grammar used with the meaning-answer model. This mildly context-sensitive
grammar is used to train the meaning-answer model on the question-answering task. For
simplicity, the grammar is shown as context-free, with the context-sensitivies indicated and
explained by the footnotes. Terminals begin with a lowercase letter, while nonterminals are in
boldface and begin with an uppercase letter. The symbol | separates alternative derivations,
and terms in brackets are optional. Watson begins derivations from the Question nonterminal
to generate a question that can be given as input to the model, and Sherlock begins from the
Answer nonterminal to generate an answer to such a question.

aWhen the parent nonterminal is Question, the evaluation chosen for Property is con-
strained so as not to reveal the missing property from the preceding What expansion. For
example, questions such as What color pyramid is red? are disallowed.

bPyramid objects are disallowed as subjects of under and objects of on because, in the
simulated environment, pyramids cannot support other objects due to their pointed tops.

cThe evaluation chosen for Is must agree in number with the Object expansion that
serves as its subject.
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Table 1: Binary Acoustic Features of Heard Phonemes

Phoneme
Feature b d e f g h i j k l mn o p s t u v w z æ D ï A O @ Ä E I ô S U 2 Z Ã Ù T

Consonantal ++−+++−+++++−+++−+++−++−−−−−−++−−++++

Vocalic −−+−−−+−−+−−+−−−+−−−+−−+++++++−++−−−−
Compact −−−−+−−−+−−−−−−−−−−−−−+−−−−−−−+−−+++−

Diffuse ++−+−−−−−−++−+++−+−+−+−−−−−−−−−−−−−−+

Grave +−−+−−−−−−+−−+−−−+−−−−−−−−−−−−−−−−−−−
Acute −+−−−−−−−−−+−−++−−−+−+−−−−−−−−−−−−−−+

Nasal −−−−−−−−−−++−−−−−−−−−−+−−−−−−−−−−−−−−
Oral ++−+++−+++−−−+++−+++−+−−−−−−−++−−++++

Tense −−++−++−+−−−+++++−−−−−−+−−+−−−+−−−−++

Lax ++−−+−−−−−−−−−−−−+−+++−−++−++−−++++−−
Continuant −−−+−−−−−−−−−−+−−+++−+−−−−−−−−+−−+−−+

Interrupted ++−−+−−−+−−−−+−+−−−−−−−−−−−−−−−−−−++−
Strident −−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−++−
Mellow −−−−+−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−+

+Voicing +++−+−++−++++−−−++++++++++++++−++++−−
−Voicing −−−+−+−−+−−−−+++−−−−−−−−−−−−−−+−−−−++

+Duration −−−−−−−−−−−−−−+−−−−+−−−−−−−−−−+−−+−−−
−Duration ++−+++−+++++−+−+−++−−++−−−−−−+−−−−+++

+Frication −−−+−+−−−−−−−−+−−+−+−+−−−−−−−−+−−++++

−Frication ++−−+−−+++++−+−+−−+−−−+−−−−−−+−−−−−−−
Liquid −−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−
Glide −−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

Retroflex −−−−−−−−−−−−−−−−−−−−−−−−−−+−−+−−−−−−−
F2,V H −−+−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−
F2,H −−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−

F2,HM −−−−−−−−−−−−−−−−−−−−−−−−−++−−−−−+−−−−
F2,LM −−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−
F2,L −−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−

F2,V L/F1,V H −−−−−−−−−−−−+−−−+−−−−−−−−−−−−−−−+−−−−
F1,H −−−−−−−−−−−−−−−−−−−−+−−+−+−−−−−−−−−−−

F1,HM −−−−−−−−−−−−−−−−−−−−−−−−+−−+−−−−−−−−−
F1,LM −−+−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−
F1,L −−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−

F1,V L −−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−
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adjusts its connection weights to better imitate this response in the future.
Training is supervised in the sense that complete training targets are always
provided, but it is a type of self-supervision where the model need only observe
the naturally occurring dialog between Watson and Sherlock and attempt—
perhaps covertly—to imitate the latter.

To answer Watson’s question, the model must examine the environment and
determine the set of object attributes and relations Watson is referring to. If
the question was What color block is the green pyramid on?, in the context of
the environment of Figure 2, the model must first determine that (Color green

4) and (Shape pyramid 4) are of interest, and then find that the on-relation
only makes sense with the object labeled 1, as (Location on 4 1). (Shape

block 1) shows that object 1 fits with the clue that Watson has a block in
mind. Finally, the model must deduce that Watson asked about the color,
and so must retrieve the predicate (Color blue 1) from its working-memory
representation of the environment.

When training the meaning-answer model, Sherlock gives precisely these five
predicates as its answer, and the meaning-answer model must learn to do the
same. On the other hand, when training the spoken-answer model, Sherlock
gives the answer as a speech sequence. Specifically, Sherlock derives a complete
English sentence, starting from the Answer nonterminal in the grammar of
Figure 4. Sherlock constrains the derivation to conform to the contents of the
predicate-based answer. For the question What color block is the green pyramid
on? and the environment shown in Figure 2, Sherlock will invariably answer
The green pyramid is on the blue block. The answer sentence is phonetically
transcribed, just as Watson’s questions are, to form an unsegmented temporal
sequence of phonemes. The spoken-answer model uses Sherlock’s speech stream
as a temporal sequence of training targets to be produced in response to the
question input.

Previous models (e.g., Plaut & Kello, 1999) have proposed that a learner run
its internal representation of the answer’s meaning forward to create a series of
articulations for the sounds of the sentence. By feeding these representations
through a forward model mapping articulatory features to auditory features,
the learner could generate predictions about the speech stream. This would
enable the learner to compare Sherlock’s speech stream with its own predictions,
working backward to turn auditory prediction errors into a training signal for
articulatory features, and thus learning how to produce the desired speech. The
spoken-answer model, for computational expediency, assumes that this process
has already taken place, training directly on phonemes as bundles of binary
articulatory features. The complete list of binary articulatory features and
associated phonemes can be found in Table 2.
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Table 2: Binary Articulatory Features of Spoken Phonemes

Phoneme
Feature b d e f g h i k l mn o p s t u v v w z æ D ï A O @ Ä E I ô S U 2 Z Ã Ù T

Consonantal ++−+++−++++−+++−++++−++−−−−−−++−−++++

Vocalic −−+−−−+−+−−+−−−+−−−−+−−+++++++−++−−−−
Anterior ++−+−−−−+++−+++−−+−+−+−−−−−−−−−−−−−−+

Coronal −+−−−−−−+−+−−++−−−−+−+−−−−−−−++−−++++

+Voicing +++−+−+−++++−−−+++++++++++++++−++++−−
−Voicing −−−+−+−+−−−−+++−−−−−−−−−−−−−−−+−−−−++

Continuant −−++−++−+−−+−+−+++++++−+++++++++++−−+

Stop ++−−+−−+−++−+−+−−−−−−−+−−−−−−−−−−−++−
Nasal −−−−−−−−−++−−−−−−−−−−−+−−−−−−−−−−−−−−

Strident −−−+−−−−−−−−−+−−−+−+−−−−−−−−−−+−−+++−
Very High −−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

High −−−−+−−+−−−−−−−−+−+−−−+−−−−−+−++−+++−
Middle ++++−−−−+++++++−−+−+−+−−−++−−+−−−−−−+

Low −−−−−+−−−−−−−−−−−−−−−−−−+−−+−−−−+−−−−
Very Low −−−−−−−−−−−−−−−−−−−−+−−+−−−−−−−−−−−−−

Front −−+−−−+−−−−−−−−−−−−−+−−−−−−++−−−−−−−−
Front Center −−−−−−−−−−−−−−−−−−−−−−−−−++−−−−−−−−−−

Center ++−+−+−−+++−+++−++−+−+−−−−+−−++−−++++

Back Center −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−
Back −−−−+−−+−−−+−−−+−−+−−−+++−−−−−−+−−−−−

In both the predicate-output and speech-output scenarios, the answers to
the questions differ, based on the current environment, such that the mapping
from questions to answers is never one-to-one. Indeed, both predicate-based
and speech-based answers to Watson’s question What color block is the green
pyramid on? would change if the block under the green pyramid were red in-
stead of blue; the predicate-based answer would also change (albeit slightly) if
the scene were visually identical but the object labeling was altered. Though
this example suggests that the number of possible answer variations is small,
some questions admit much greater environment-based variation than others.
Questions that are more open-ended, such as Where is the block? could have
literally hundreds of possible answers stemming from the diversity of environ-
ments where the question makes sense. Thus, neither the model nor Sherlock
could answer questions reliably without integrating information from the visual
environment.

Neural architectures

To learn the tasks described in the previous section, the neural networks that
comprise both the meaning-answer model and the spoken-answer model need
to accurately recognize and produce sequences that are as long as 20 predicates
or 40 phonemes. They are built1 using the long short-term memory architec-
ture (LSTM; Hochreiter & Schmidhuber, 1997; Gers & Cummins, 2000; Gers

1The models were implemented using our open-source Java library XLBP, which stands
for eXtensible Layered Back-Propagation and is capable of creating and training classic back-
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Figure 5: Diagram of an LSTM memory cell. Each oval represents a locus of computation
within the cell. Solid arrows represent trainable weighted links into or out of the mem-
ory cell, while dashed arrows represent non-weighted input/output relationships among the
cell-internal computations. Like traditional neural network units, the memory cell forms
a weighted sum of its inputs (1). The input gate similarly aggregates its own inputs and
squashes the result with a logistic function (2), putting it in the [0, 1] range. The resulting
input gate activation multiplicatively modulates the input coming into the memory cell (3),
allowing none, some, or all of the input to enter. The state of the cell from the previous time
step is retained (4) and modulated by the activation of the forget gate (5). The resulting
state is added to the current input to form the new state (6), which is then passed through a
logistic function (7). The memory cell’s outward-facing activation is calculated by multiplying
in the activation of the output gate (8). The resulting activation can be passed downstream
to other units via further weighted connections.

& Schmidhuber, 2001), which has been previously shown to perform very well
on long temporal sequences. Hidden layers of an LSTM network are similar
in many ways to those in a simple recurrent network (SRN; Jordan, 1986; El-
man, 1990), with the chief difference being that, instead of a layer-level context,
where the contents of a layer are copied to serve as input for the next step in
the sequence, LSTM networks are comprised of special hidden layer units, called
memory cells, that each utilize a unit-level context. In other words, each mem-
ory cell’s current activation depends directly upon its state during the previous
time-step. In addition, these self-recurrent memory cells sport multiplicative
input and output gates that learn to protect the unit’s stored activation from
unhelpful input and prevent the unit from prematurely interfering with down-
stream processing. A third multiplicative gate learns to provide a gain on each
unit’s previous state, allowing it to forget this state when it is no longer useful.
Figure 5 depicts and further explains a typical memory cell and its gates. For a
detailed account of the activation and learning properties of these memory cells,
see Monner & Reggia (2012).

This type of network can be trained by gradient descent methods similar

propagation networks, SRNs, LSTMs, and many other types. A link to the library is available
at the author’s website, http://www.cs.umd.edu/~dmonner/.
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to those utilized by SRNs. Our models adopt the LSTM-g training algorithm
(Monner & Reggia, 2012), which focuses on maintaining information locality as a
means of approaching biological plausibility. Like many gradient-descent based
algorithms, LSTM-g utilizes back-propagating errors, which apportions errors at
the outputs and propagates error information to upstream units in proportion to
each unit’s responsibility for causing the error. This granular blame assignment
allows individual units to modify the strengths of their incoming connections
to help prevent similar errors in the future. Since real neural networks have
no know mechanism for passing signals backwards through a network, many
consider the use of back-propagation to be a detriment to the biological realism
of any model. While we do not completely disagree, recent work shows how
such error propagation is closely related to the more plausible family of Hebbian
training methods (Xie & Seung, 2003), potentially minimizing this objection.

Although the basic components of the two models are the same, the network
architectures differ slightly, based on the demands of each task. The network
architecture of the meaning-answer model is shown in Figure 6. The network
has an input layer for visual predicates (bottom right), which are presented
temporally and accumulated into the visual gestalt in a visual accumulation
layer. Internal layers such as this one are composed of the self-recurrent LSTM
memory cells described above and are identified by the small recurrent arc on the
top-left side. The network also has an input layer for auditory features, which
feed through two successive layers of memory cells, forming an auditory gestalt
on the second such layer. The two pathways differ in serial length because pilot
experiments showed that the visual and auditory gestalt representations are
best formed with one and two layers of intermediary processing, respectively.
After both input gestalts have formed, they are integrated by another layer of
memory cells, which is then used to sequentially generate predicates that specify
the grounded output that answers the input question. The network’s previous
output is fed back to the integration layer in the style of a simple recurrent
network (SRN; Jordan, 1986) to provide a more specific context for sequential
processing.

The network that implements the spoken-answer model, detailed in Fig-
ure 7, differs from that of the meaning-answer model in only a few key respects.
The main change is that the meaning-answer model’s predicate-output layer is
replaced by an output layer representing articulatory features used to create
output speech sequences. The other change is the addition of another layer of
memory cells between the integration layer and the output. Pilot experiments
showed that network architectures lacking this additional layer had more trouble
converting the intended speech stream into articulatory features. A key feature
of the spoken-answer model architecture is that, unlike the meaning-answer
model, it does not prespecify any semantic representations. This forces the net-
work to learn its own internal meaning representations, which have the benefit
of being distributed while supporting the type of systematic generalization that
language use requires (Fodor & Pylyshyn, 1988; Hadley, 1994).
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Auditory Features (34)

Integration Layer (120)

Auditory Accumulation II (60) Visual Accumulation (60)

Auditory Accumulation I (60)

Visual Predicates (24)

Meaning Predicates (24)

Figure 6: Neural network architecture of the meaning-answer model. Boxes represent layers of
units (with number of units in parentheses), and straight arrows represent banks of trainable
connection weights between units of the sending layer and units of the receiving layer. Layers
with a curved self-connecting arrow are composed of LSTM memory cells. This architecture
receives visual input from the bottom-right layer, which is temporally accumulated in the
downstream layer of memory cells. Auditory input is received from the bottom-left layer, to
be accumulated in two layers of memory cells, which helps the model represent two levels of
structure (words and phrases). The network’s representations of its auditory and visual inputs
are integrated in a final layer of memory cells, from which the network produces the desired
sequence of output predicates.
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Auditory Features (34)

Integration Layer (120)

Auditory Accumulation II (60) Visual Accumulation (60)

Auditory Accumulation I (60)

Production Layer (120)

Articulatory Features (20)

Visual Predicates (19)

Figure 7: Neural network architecture of the spoken-answer model. Depicted in the style
described in Figure 6, this architecture has an additional production layer that helps the
network learn to generate the output phonemes from the internal meaning representations
of the integration layer. The number of units in the visual predicate input layer decreased
from 24 to 19 to accommodate the slightly simplified grammar that the spoken-answer model
learns (see Figure 12).
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Results

The meaning-answer model

We trained 10 independent instances of the meaning-answer model, each
with randomly chosen initial connection weights, on the question-answering task
for 5 million randomly generated trials. This duration of training may seem
long, but it represents a mere fraction of a percent of the input space, leaving
the model to generalize across the rest. An arrow between a pair of layers
in Figure 6 indicates that a given pair of units from these layers possesses a
trainable weighted connection with a probability of 0.7. The networks have 300
memory cells in all internal layers combined and about 60 thousand trainable
connection weights in total. The networks use a learning rate of 0.01.

Reported accuracy results are based only on sets of 100 trials that the model
had never encountered before evaluation time, and as such, always reflect gener-
alization and never memorization. For each such trial, the model must produce
a sequence of predicates, where a predicate is counted as correct only if it occurs
in the correct sequential position and has all unit activations on the correct side
of 0.5. On average, the trained meaning-answer models were able to produce
a perfect sequence of grounded predicates—one which contains all necessary
predicates in the proper order and no others—to answer a novel input question
92.5% of the time, strongly suggesting that this style of observe-and-imitate
training is sufficient even for the difficult task of grounded question compre-
hension and answering. The 7.5% of incorrect answers skew towards the most
difficult trials—those involving the longest questions, or with a large number of
similar objects in the environment. Most incorrect answers can be traced to a
single incorrect object label.

To evaluate the relative difficulty of the components of the task, one can
decompose the output predicates into three categories: attribute values cor-
responding to linguistic descriptions that are present in the question, referent
identifications made by grounding the question in the environment, and at-
tributes that are inferred from the environment to answer the question. In
other words, we examine the output units that the model activates, dividing
them into three categories and scoring the model’s accuracy at activating each.
The referent identification category corresponds to all object label units, since
each such output represents the identification of a referent from the question via
the environment. The remaining output units represent attributes, which are
divided into two classes: those that were mentioned in the input question (lin-
guistic descriptions), and those that were not in the question but are required
in the answer (attribute inferences). Comparing the time-course of accuracy
over these three categories, Figure 8 shows that the model learns to understand
spoken descriptions fairly quickly, with accuracy leveling off above 95% after
the first million trials. At this point, accuracy on referent identifications and
question-answers is relatively weak, at 80% and 70%, respectively; however,
accuracy on these areas continues to slowly improve as training progresses, pro-
viding evidence that grounding the language in the environment is much more
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Figure 8: Time-course of three metrics during training. The three lines represent accuracy
recovering linguistic descriptions, referent identifications, and attribute inferences, averaged
over all ten training runs. That referent identifications precede linguistic descriptions at the
far left of the graph is to be expected, since chance accuracy at picking a referent 25%.

difficult than recognizing a sequence of words and the basic outline of the mean-
ing it entails. It also shows that using the environment to infer the answers to
questions is harder still.

To begin to gain an understanding of how the model acquires this system-
atic ability to answer novel questions in novel environments, one must examine
the internal representations that the model learns during training. These are
obtained from snapshots of one trained model’s integration layer taken imme-
diately after it finishes hearing Watson’s question; thus, the integration layer
representation takes into account the network’s working memory representations
of both the visual environment and the auditory input. For certain very simple
questions, such as What color is the block?, there are enough instances in the
test data such that each possible answer—in this case, red, green, or blue—is
represented multiple times. Looking for systematic differences between related
sets of questions—and between multiple instances of the same question where
the different environments would suggest differing answers—reveals what the
model knows at the instant immediately after it hears the complete question.

The representations of three related questions are examined first. Each ques-
tion asks about the color of a different type of object—a block, a pyramid, or a
cylinder—and can have any of the three possible colors as its answer, depend-
ing on the environment. Applying principal component analysis (PCA) to the
representations aids in analysis by removing some of the redundancy and dis-
tributedness that is characteristic of learned representations in neural networks.
The input to the PCA in this case is a collection of activation vectors, each
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of length 120, from the integration layer, where each vector is collected from a
different trial, immediately after the inputs have finished and before the outputs
begin. The output of the PCA, then, is a collection of the same size consisting
of different 120-dimensional vectors in the transformed PC-space. We then con-
sider the first 10 or so PC dimensions, since those account for the most variation
in the integration layer’s representations. While variation along the principal
components (PCs) need not necessarily correspond to interpretable changes in
the internal representation, this is in fact the case for many PCs. This indi-
cates that the models are learning representations that can vary systematically
in many dimensions. The following figures only involve those PCs for which
the variation is easily interpretable. Though lower PC numbers represent larger
amounts of variation in general, the PC number is essentially immaterial here,
since the goal is merely to point out systematic variation in some PC.

Figure 9 graphs the representations in PCA-space, grouping them by ques-
tion type, and subdividing those groups based on the expected answer. Here,
each shaded polygon corresponds to a group of questions that are identical,
though they may have different answers. For example, a polygon might repre-
sent the question What color is the pyramid?. Valid answers to this question
involve a color attribute: red, green, or blue. Each vertex of such a polygon is
labeled with the answer Watson is looking for and represents an average over all
such questions that have this answer. So, to complete the example, the vertex
labeled blue (the top-left-most vertex in Figure 9) represents the average rep-
resentation over all instances where Watson asked What color is the pyramid?
and had a blue pyramid in mind.

In this figure and those that follow, the representations for some of the
shaded groups may seem to overlap, which one might expect to cause the model
to mistake one group for another. These representations, however, are always
well-separated by other principal components that are not shown, leaving the
model with no such ambiguity.

The results show a remarkably systematic pattern. First, the model’s in-
ternal representations differ consistently, based on the expected answer to the
question, which was not present in the auditory input and has not yet been
produced by the network as output predicates. This systematic difference im-
plies that the model is aware of the expected answer to the question as soon as
it is asked. While the model possessing the answer is not surprising, since all
the information needed to deduce it is present in the visual input, the clarity
of the answer’s presence in the internal representation just after the question
input suggests that the model processed the question online, deriving the an-
swer immediately from its working memory representation of the environment.
Additional systematicity is apparent in the respective orientations of the answer-
groups for each question. Regardless of which question was asked, a blue answer
is always a positive shift along PC7 and a red answer is always a negative shift,
with green answers falling in the middle and along a positive shift in PC6. This
type of organization serves as evidence of compositional, symbol-like represen-
tations for the various color concepts.

This analysis was repeated for a collection of similar What size? questions,
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Figure 9: What color? question representations by expected answer. This plot shows the
learned internal representations generated by the model for a set of What color? questions,
visualized in PCA-space and separated according to the expected answer to the question.
Shaded polygons correspond to sets of questions that are identical but might nonetheless have
different answers. Each possible answering attribute corresponds to a labeled vertex of the
polygon.
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Figure 10: What size? question representations by expected answer. This plot shows the
learned internal representations generated by the model for a set of What size? questions,
visualized in PCA-space and separated according to the expected answer to the question, in
the style of Figure 9.

with very similar results as shown in Figure 10. Again, the model displays clear
representational differences that reveal its knowledge of the question’s answer
and further show it represening this information using systematic variations that
are largely independent of the question being asked.

One might next inquire about the extent to which the model’s internal repre-
sentations reflect the environmental referents present in the question and answer.
This can be gauged by analyzing the same set of What color? and What size?
questions, again partitioning the trials into groups by question, but this time
subdividing these groups based on the unique label that the simulated environ-
ment assigned to the referent. These labels are never represented in auditory
input. Thus, the network’s reliable knowledge about object labels is direct ev-
idence that the model’s internal sentence representations are grounded in the
visual input. The results in Figure 11 show a remarkably systematic representa-
tion that makes clear several distinctions at once. First, the two question types
What color? and What size? are separated along PC1. Second, the shape of the
object in each question has an observable effect on its representation regardless
of question type, with pyramid questions producing markedly smaller shaded
regions in this projection than the other questions, while the cylinder and block
questions produce regions of similar size, with the former shifted down along
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Figure 11: What color/size? question representations by object label. This plot shows the
learned internal representations generated by the model for a set of What color? and What
size? questions, visualized in PCA-space and separated according to the object label of the
sentence’s referent, in the style of Figure 9.

PC4 across both question types. Finally and most importantly, each question’s
representation reveals clear knowledge of the label assigned to the question’s
referent, with questions about objects 1 and 4 being distinguished along PC4,
while questions about objects 2 and 3 differ along PC1. This figure definitively
shows the systematic independence of the model’s knowledge about the type of
answer being sought (size or color), the shape of the object in question (block,
pyramid, or cylinder), and the identifying label of the referent.

The spoken-answer model

Because of the additional size and complexity of the spoken-answer model,
it trains on a slightly smaller grammar for computational expediency. This
grammar is a subset of the one in Figure 4, arrived at by disallowing cylindrical
objects and removing the size attribute altogether. For reference, the resulting
grammar is shown in Figure 12. Pilot experiments indicated that the spoken-
answer model has no trouble learning the full grammar, and scales from smaller
grammars at approximately the same rate as the meaning-answer model, which
appears to scale linearly in the number of words in the grammar; this is a non-
trivial observation given that each additional word creates a new combinatorial
dimension of variation in the space of the grammar. Computational resource
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Question → where Is Object |What Is Property

Answer → Object Is Property

Object → the [Color] Shape

What → what color Shape |
what [Color] thing

Property1 → Location |Color

Location2 → on Object | under Object | near Object

Is3 → is | are

Color → red | blue | green

Shape → things | pyramid[s] | block[s]

Figure 12: Grammar used with the spoken-answer model. This slightly simpler grammar is
used to train the spoken-answer model. For comparison, and for the text of the footnotes, see
the original grammar in Figure 4.

constraints impeded replicated experiments with the spoken-answer model at a
comparable size to the meaning-answer model.

We trained 10 individual instances of the spoken-answer model for up to 5
million randomly generated trials to learn the question-answering task, using
the grammar from Figure 12. The networks are connected as shown in Fig-
ure 7, with each pair of units in connecting layers having a probability of 0.7 of
sharing a weighted connection. This probability, combined with the 420 total
memory cells across all internal layers, results in networks with approximately
120 thousand connection weights. The learning rate is 0.002.

Trained models are assessed on their ability to produce a perfect sequence
of phonemes comprising a full-sentence answer to an input question on a novel
trial. Each phoneme in a sequence is considered correct if each feature unit has
an activation on the correct side of 0.5. On average, the spoken-answer models
are able to accomplish this for 96.9% of never-before-seen trials. For example,
in an environment containing a blue block on top of a red block, as well as a red
pyramid nearby, Watson asked the model What red thing is the blue block on?,
to which the model responded with [D@blUblAkIzAnD@ôEdblAk], which translates
as The blue block is on the red block. This response was correct in the sense
that the phoneme sequence the model chose represents the desired answer to
the question; additionally, the model produced these phonemes in the correct
sequence, and each had exactly the right articulatory features.

The occasional (3.1%) errors made by the networks fall into roughly three
categories. The first and most common is a slight mispronunciation of an other-
wise correct answer. For example, the model was asked What color pyramid is
on the red block?, and it produced the answer [D@bl?pIô@m@dIzAnD@ôEdblAk], where
the “?” indicates that the network produced a pattern of articulatory features
that does not precisely correspond to one of the language’s phonemes. However,
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it is clear from context that the model meant to say The blue pyramid is on
the red block, which is the correct answer to the question in the environment
provided during that trial. Despite the fact that the network clearly knew the
correct answer and came extremely close to producing it, the reported statistics
count every trial like this as an error.

The other type of error occurs in cases where the model seems unsure of the
expected answer to the question. Sometimes, this takes the form of a direct and
confident substitution of an incorrect answer, as was the case when the model
was asked What color is the block? and confidently answered The block is green
when the block was in fact blue. Other times, the model muddles two possible
answers when speaking. For example, when asked What color block is the blue
pyramid under?, the model responded with [D@blUpIô@m@dIz@ndÄD@gl?blAk], which
glosses roughly as The blue pyramid is under the glih block. The correct answer
for the malformed word here would have been blue, but the model was apparently
confused by a preponderance of green objects present in the environment on that
trial, producing this hybrid of the two words in its answer. In other instances,
the model trails off or “mumbles” when it does not know which word to say in its
answer. A trial where the model was asked Where is the blue pyramid? provides
an example of this behavior. The pyramid in question was on top of a green
block, which required the model to produce three salient pieces of information
that were not present in the question (i.e., on, green, and block) as part of its
answer. The model came back with [D@blUpIô@m@dIzAnD@gôinb??], roughly The
blue pyramid is on the green buhhh.... Though the model produced the first two
components of the expected answer, it was apparently unsure enough about
block that it trailed off into unrecognizable phonemes and, in fact, stopped
producing phonemes short of where the utterance would normally end.

Looking at the spoken-answer model’s learned distributed representations re-
veals the same sorts of patterns that were present in those of the meaning-answer
model. Figures 13–15 examine the spoken-answer model’s internal representa-
tions by analyzing snapshots of the integration layer activations immediately
after a question is presented. As before, PCA strips some of the redundancy
out of the representations, identifying the main components for productive visu-
alization, two at a time. This time, the investigation focuses on a more involved
set of Where? questions, which each require the network to produce three pieces
of information that were not present in the question. In response to the example
question Where is the red block?, the model would need to respond by placing
the red block in relation to a reference object, as in The red block is under the
blue pyramid. Figures 13–15 test the internal representations for the presence
of information about the location (under), color (blue), and shape (pyramid) of
the reference object immediately after the model hears the question and before
it begins its response.

Figure 13 shows a view of internal representations from PCs 2 and 3, depict-
ing not only a clear separation of three variations of the Where? question, but
also systematic manipulations of PC3 to distinguish the on and near relationals,
while PC2 separates these from under.

Figure 14 shows the color of the reference objects in PCs 4 and 8. While
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Figure 13: Where? question representations by answer location. This plot shows the learned
internal representations generated by the spoken-answer model for a set of Where? questions,
visualized in PCA-space and separated according to the relational word that positions the
reference object in relation to the question’s subject. Shaded polygons correspond to sets of
questions that are identical but might nonetheless have different answers. Each possible word
representing a valid answer corresponds to a labeled vertex of the polygon.
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Figure 14: Where? question representations by answer color. This plot shows the learned
internal representations generated by the model for a set of Where? questions, visualized in
PCA-space and separated according to the color of the reference object used to locate the
question’s subject, in the style of Figure 13.

other PCs not depicted here demarcate representations of the different question
types, this figure shows PC4 separating red from green and PC8 distinguishing
blue from either of these.

Finally, Figure 15 breaks out the question representations in PCs 1 and 3,
showing that the identity of the reference object as a block or a pyramid is
primarily represented along the first principal component.

In total, Figures 13–15 present convincing evidence that the spoken-answer
model learns internal representations much like those of the meaning-answer
model. These representations quantize the input space and vary systematically
along a number of principal dimensions to represent complex knowledge.

This section on the spoken-answer model, unlike the previous section on the
meaning-answer model, does not contain a figure depicting information about
the remaining property of the reference objects—the identifying label assigned
to each. This is because an analysis of the representations showed no under-
lying systematicity to the representations when broken down by object label.
However, this is not surprising. Being more speech-like, the responses that the
spoken-answer model produces differ from those of the meaning-answer model
in that they do not involve explicit specification of object labels. Object la-
bels only exist in the visual input to the spoken-answer model, and to perform
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PCA-space and separated according to the shape of the reference object used to locate the
question’s subject, in the style of Figure 13.
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the question-answering task, the model must use them to bind attributes to-
gether to form coherent objects—that is, binding (Color blue 2) with (Shape

pyramid 2) and (Location near 2 3) to produce the conception of a blue
pyramid that is near some other object. Once this binding is complete for the
entire environment, the model has no reason to retain the object label that was
used to perform the binding; the label has served its function and is hence-
forth superfluous since it is not needed as part of the response. Therefore, one
should not expect the high-level representations at the integration layer to in-
volve object label at all, and indeed, the variation due to object label is small
and unsystematic compared to the meaning-answer model.

Discussion

The results from the previous section suggest that for both the meaning-
answer model and the spoken-answer model, observation and imitation are re-
alistic methods by which linguistic question-answering behavior can be learned.
The meaning-answer model learned to answer questions by directly mimicking
the intended meaning of another speaker, Sherlock. While such imitation may
occasionally be possible in situations where the learner can readily infer the
speaker’s meaning, such situations might not be frequent enough to facilitate
full language learning. In any event, such a model could only hope to explain
how the answers are derived, but not how they are communicated. Besides serv-
ing as a simplified proof-of-concept and a stepping stone to the spoken-answer
model, the meaning-answer model provides clear evidence that a purely neural
network model is capable of integrating two separate sensory streams to pro-
duce a coherent, grounded whole. The meaning-answer model is the only known
neural network model able to successfully learn to map sentence-level questions,
represented at sub-lexical resolution, onto complex, composable symbolic mean-
ings representing their answers.

The spoken-answer model improves on the meaning-answer model in two
ways. First, it learns to perform the question-answering task not by mimicking
Sherlock’s meaning, but by mimicking Sherlock’s speech. Even though speech
is often a lossy translation of the meaning, it has the virtue of always being
observable—a property that places this model closer to real-world plausibility.
Second, the spoken-answer model’s performance encompasses not only answer
derivation but also response generation, giving it an extra level of explanatory
power over the meaning-answer model. This final model is the only known neural
network able to map sub-lexical representations of natural language questions
to natural language answers, devising its own semantic representations along
the way.

While the spoken-answer model is a step in the right direction, it still relies
on a symbol-like representation of the simulated environment. This fact limits
its ability to scale, since each new property or relation added to the environment
immediately requires a linear increase in the size of the network. In contrast,
new words require no such increases up front, since new words can be created
out of the model’s current inventory of phonemes. The eventual solution to this
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scalability issue will be to create a model that replaces the symbol-like envi-
ronment representations with much more general features capable of generating
a variety of rich visual spaces without modification. Such a model could po-
tentially grow sublinearly as new words, attributes, and relations are added,
thereby lending itself more readily to large-scale modeling efforts. Developing
such a model and studying its scaling properties are important tasks left for
future work.

Both of the models presented here appear to devise internal representations
that are approximately compositional, imbuing them with the generative power
of symbolic approaches to cognition. At the same time, these learned repre-
sentations are distributed, conferring beneficial properties like redundancy and
graceful degradation.

These models suggest that simple observation and imitation might be suffi-
cient tools for learning to solve question-answering tasks. As discussed at the
outset, question answering—or more generally, the request/response mode of
communication—is fundamental to language. Since the principles in question
are so elementary, computational models that observe and imitate seem to be
ideal for application to complex language learning tasks.
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